1
|
Bravo-Moraga F, Bedoya M, Zinovjev K, Tuñon I, Alzate-Morales J. Computational Estimation of Residence Time on Roniciclib and Its Derivatives against CDK2: Extending the Use of Classical and Enhanced Molecular Dynamics Simulations. ACS OMEGA 2025; 10:16731-16747. [PMID: 40321554 PMCID: PMC12044442 DOI: 10.1021/acsomega.5c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
Residence time is a crucial parameter for assessing the functional efficacy of drugs, quantifying the duration of a drug's binding to its target protein. It is directly related to therapeutic effects and the dosing regimen. Several factors can influence the residence time, including drug-protein binding kinetics and the unbinding pathways. Understanding the efficacy of a drug requires the characterization of both its binding kinetics and unbinding pathways from the drug-protein complex. By employing our previous computational protocol that uses enhanced sampling techniques such as well-tempered metadynamics (WT-MetaD) and classical molecular dynamics (cMD) simulations, it was possible to elucidate the inhibitor unbinding pathways and identify molecular determinants that extend the residence time in a set of cyclin-dependent kinase 2 (CDK2) inhibitors. In this study, using WT-MetaD, the relative residence times of roniciclib and eight derivatives were quantified on the nanosecond timescale. Notably, substituting the R5 position of the aminopyridine core with larger substituents significantly prolonged the computational residence time, which correlated well with experimental data (R 2 = 0.83). Our computational simulations reveal the critical importance of specific amino acids, including Phe80, Lys33, and Asp145, in maintaining the stability of the protein-inhibitor complex. These residues are key in keeping the hydration network around them, affecting the inhibitor binding duration. The hydrogen bond interaction between residue Asp145 and roniciclib and its derivatives is particularly noteworthy, significantly influencing the electrostatic contribution to the binding free energy when the halogen substituent size increases. Furthermore, our analysis of protein flexibility at the C-terminus and N-terminus angles revealed a relationship with the size of the R5 substituent in the bound inhibitor, supported by principal component analysis. Additionally, different unbinding pathways were proposed, where it was found that inhibitors can dissociate from the CDK2 binding site through two principal routes: the α-helix D and β-1 and β-2 segments.
Collapse
Affiliation(s)
- Felipe Bravo-Moraga
- Center for
Bioinformatics, Simulation and Modeling (CBSM), Department of Bioinformatics,
Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile
| | - Mauricio Bedoya
- Centro de
Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría
de Investigación y Postgrado, Universidad
Católica del Maule, Avenida San Miguel 3605, Talca 3466706, Chile
- Laboratorio
de Bioinformática y Química Computacional (LBQC), Departamento
de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3466706, Chile
| | - Kirill Zinovjev
- Departamento
de Química Física, Universitat
de Valencia, C/Dr. Moliner
50, Valencia 46100, Spain
| | - Iñaki Tuñon
- Departamento
de Química Física, Universitat
de Valencia, C/Dr. Moliner
50, Valencia 46100, Spain
| | - Jans Alzate-Morales
- Center for
Bioinformatics, Simulation and Modeling (CBSM), Department of Bioinformatics,
Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile
| |
Collapse
|
2
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Binjubair FA, Alanazi MM, Alsulaimany M, Al-Rashood ST, Ghabbour HA, Abdel-Aziz HA. Design, synthesis and biological evaluation of pyrazolo[3,4- b]pyridine derivatives as dual CDK2/PIM1 inhibitors with potent anti-cancer activity and selectivity. J Biomol Struct Dyn 2025:1-25. [PMID: 40079180 DOI: 10.1080/07391102.2025.2475233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-b]pyridine derivatives (6a-c), confirmed via spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay. Among the tested compounds, 6b exhibited superior efficacy, with higher selectivity indices for HCT-116 (15.05) and HepG2 (9.88) compared to the reference drug staurosporine. Mechanistic studies revealed that 6b induced apoptosis (63.04-fold increase) and arrested the cell cycle at the G0-G1 phase, highlighting its anti-proliferative effects. In an in-vivo solid Ehrlich carcinoma (SEC) mouse model, compound 6b significantly reduced tumor weight and volume, exceeding the efficacy of doxorubicin. Additionally, 6b potently inhibited CDK2 and PIM1 kinases (IC50: 0.27 and 0.67 µM, respectively) and reduced tumor-promoting TNF-alpha expression, as confirmed by histopathological and immunohistochemical studies. Computational analyses, including molecular docking, molecular dynamics simulations, and DFT calculations, provided insights into the binding stability and interaction mechanisms of 6b with CDK2 and PIM1, while in-silico pharmacokinetic and toxicity evaluations confirmed its favorable drug-like profile and safety. This study highlights compound 6b as a promising dual CDK2/PIM1 inhibitor with potent anti-cancer activity and selectivity, paving the way for its further optimization and development as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | | | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
Wang L, Wang Y, Zhang L, Zhao J, Wu S, Yang Z. Binding Mechanism of Inhibitors to CDK6 Deciphered by Multiple Independent Molecular Dynamics Simulations and Free Energy Predictions. Molecules 2025; 30:979. [PMID: 40076203 PMCID: PMC11901890 DOI: 10.3390/molecules30050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) has been identified as a potential drug target in various types of cancers. In our current study, multiple independent molecular dynamics simulations of four separate replicates and computations of binding free energies are carried out to decipher the binding mechanisms of three inhibitors, LQQ, 6ZV, and 0RS, to CDK6. The dynamic analyses indicate that the presence of inhibitors influences conformational alterations, motion modes, and the internal dynamics of CDK6. Binding free energies computed using the molecular mechanics generalized Born surface area (MM-GBSA) approach with four GB models demonstrate that hydrophobic interactions play essential roles in inhibitor-CDK6 binding. The computations of residue-based free energy decomposition verify that the side chains of residues I19, K29, M54, P55, F98, H100, and L152 significantly contribute to inhibitor-CDK6 binding, revealing the critical interaction sites of inhibitors for CDK6. The information revealed in our current study can provide theoretical aids for development of potent inhibitors targeting the CDK family.
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Wang S, Wang R, Yang J, Xu L, Zhao B, Chen L. Molecular mechanism of interactions of SPIN1 with novel inhibitors through molecular docking and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:57-77. [PMID: 39989297 DOI: 10.1080/1062936x.2025.2463586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025]
Abstract
Methyllysine reading protein Spindlin 1 (SPIN1) plays a crucial role in histone post-translational modifications and serves as an effective target for the treatment of various malignant tumours. Although several inhibitors targeting SPIN1 expression have been identified, the atomic-level interactions between SPIN1 and inhibitors remain unclear. In this study, six potential SPIN1 inhibitors A366, EML631, MS31, MS8535, vinspinln, and XY49-92B were selected for molecular docking with SPIN1. Conformational changes in SPIN1 induced by these inhibitors, as well as their interactions, were investigated using molecular dynamics simulation (MD) and energy prediction methods including molecular mechanics generalized Born surface area (MM-GBSA) and solvation interaction energy (SIE). The findings indicate that the binding pockets within domain II, specifically Phe141, Trp151, Tyr170, and Tyr177, engage in cation-π interactions with these inhibitors, while also contributing to van der Waals hydrophobic interactions of varying strengths. These van der Waals hydrophobic interactions are critical for their binding affinity, while electrostatic interactions are significantly counterbalanced by polar solvation effects. In addition, through virtual screening and molecular docking, a new lead compound CXY49 was found presenting an effective binding to SPIN1. The structural and energetic changes identified in this study provide valuable insights for the development of new SPIN1 inhibitors.
Collapse
Affiliation(s)
- S Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - R Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - J Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - L Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - B Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, P. R. China
| | - L Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| |
Collapse
|
5
|
Sun Y, Jia C, Zhang S, Zhang Q, Chen J, Liu X. Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1. Phys Chem Chem Phys 2024; 26:26784-26798. [PMID: 39403732 DOI: 10.1039/d4cp03309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In 2020, cancer-related deaths reached 9.96 million globally, of which China accounted for 3 million, ranking first in the world. Phosphoglycerate mutase 1 (PGAM1) is a key metabolic enzyme in glycolysis, catalysing the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Based on the excellent anticancer activity of PGMI-004A and HKB99, new small molecules with an anthraquinone core were synthesised to inhibit tumour growth. Developing small molecules with an anthraquinone core targeting PGAM1 may be an effective strategy for treating cancer. In this study, accelerated molecular dynamics (aMD) simulation, dynamic cross-correlation map (DCCM) calculation, principal component analysis (PCA) and free energy landscape (FEL) analysis were used to analyse conformational changes of PGAM1 caused by binding of inhibitors 8KX, 9HU and HKB. DCCM calculations and PCA showed that inhibitor binding significantly affected the kinetic behaviour of PGAM1 and conformational rearrangement of PGAM1. The binding ability and mechanism of 8KX, 9HU and HKB to PGAM1 were studied using the molecular mechanics generalised Born surface area (MM-GBSA) method. The results showed that compared with 8KX, the binding ability of 9HU and HKB to PGAM1 was enhanced by sulphonamide reversal and aminocarboxyl trifluoromethyl substitution. There were several hydrophobic interactions between inhibitors and PGAM1, providing significant contributions for inhibitor binding. Calculation of residue-based free energy decomposition revealed that F22, R90, Y92, L95, V112, W115, R116, V121, P123, P124, R191 and M206 were key residues of the PGAM1-inhibitor interaction and could be used as effective targets for designing drugs that inhibit the activity of PGAM1.
Collapse
Affiliation(s)
- Yanqi Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Chaoyue Jia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
6
|
Zhao L, Wang J, Yang W, Zhao K, Sun Q, Chen J. Unveiling Conformational States of CDK6 Caused by Binding of Vcyclin Protein and Inhibitor by Combining Gaussian Accelerated Molecular Dynamics and Deep Learning. Molecules 2024; 29:2681. [PMID: 38893554 PMCID: PMC11174096 DOI: 10.3390/molecules29112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| | | | | | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| |
Collapse
|
7
|
Bao H, Wang W, Sun H, Chen J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J Biomol Struct Dyn 2024; 42:3363-3381. [PMID: 37216340 DOI: 10.1080/07391102.2023.2213355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Point mutations play a vital role in the conformational transformation of HRAS. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by constructions of free energy landscapes (FELs) were adopted to explore the effect of mutations D33K, A59T and L120A on conformation states of the GDP-bound HRAS. The results from the post-processing analyses on GaMD trajectories suggest that mutations alter the flexibility and motion modes of the switch domains from HRAS. The analyses from FELs show that mutations induce more disordered states of the switch domains and affect interactions of GDP with HRAS, implying that mutations yield a vital effect on the binding of HRAS to effectors. The GDP-residue interaction network revealed by our current work indicates that salt bridges and hydrogen bonding interactions (HBIs) play key roles in the binding of GDP to HRAS. Furthermore, instability in the interactions of magnesium ions and GDP with the switch SI leads to the extreme disorder of the switch domains. This study is expected to provide the energetic basis and molecular mechanism for further understanding the function of HRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
8
|
Zhang W, Bai H, Wang Y, Wang X, Jin R, Guo H, Lai H, Tang Y, Wang Y. Identification of mIDH1 R132C/S280F Inhibitors from Natural Products by Integrated Molecular Docking, Pharmacophore Modeling and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2024; 17:336. [PMID: 38543123 PMCID: PMC10976062 DOI: 10.3390/ph17030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 11/19/2024] Open
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1) is a common driving factor in acute myeloid leukemia (AML), with the R132 mutation accounting for a high proportion. The U.S. Food and Drug Administration (FDA) approved Ivosidenib, a molecular entity that targets IDH1 with R132 mutations, as a promising therapeutic option for AML with mIDH1 in 2018. It was of concern that the occurrence of disease resistance or recurrence, attributed to the IDH1 R132C/S280F second site mutation, was observed in certain patients treated with Ivosidenib within the same year. Furthermore, it should be noted that most mIDH1 inhibitors demonstrated limited efficacy against mutations at this specific site. Therefore, there is an urgent need to investigate novel inhibitors targeting mIDH1 for combating resistance caused by IDH1 R132C/S280F mutations in AML. This study aimed to identify novel mIDH1 R132C/S280F inhibitors through an integrated strategy of combining virtual screening and dynamics simulations. First, 2000 hits were obtained through structure-based virtual screening of the COCONUT database, and hits with better scores than -10.67 kcal/mol were obtained through molecular docking. A total of 12 potential small molecule inhibitors were identified through pharmacophore modeling screening and Prime MM-GBSA. Dynamics simulations were used to study the binding modes between the positive drug and the first three hits and IDH1 carrying the R132C/S280F mutation. RMSD showed that the four dynamics simulation systems remained stable, and RMSF and Rg showed that the screened molecules have similar local flexibility and tightness to the positive drug. Finally, the lowest energy conformation, hydrogen bond analysis, and free energy decomposition results indicate that in the entire system the key residues LEU120, TRP124, TRP267, and VAL281 mainly contribute van der Waals forces to the interaction, while the key residues VAL276 and CYS379 mainly contribute electrostatic forces.
Collapse
Affiliation(s)
- Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hailong Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Xiaorui Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China;
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | | | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi’an-Xianyang New Ecomic Zone, Xianyang712046, China; (W.Z.); (H.B.); (Y.W.); (R.J.); (H.G.); (Y.T.)
| |
Collapse
|
9
|
Bao H, He W, Chen J. Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis. J Biomol Struct Dyn 2023; 42:11115-11132. [PMID: 37740650 DOI: 10.1080/07391102.2023.2260486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The pseudokinase domain (JH2) of the protein tyrosine kinase (Janus kinase 2, JAK2) regulates the activity of a tyrosine kinase domain (JH1) in JAK2, which is further affected by mutations in the JH2. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by construction of free energy landscapes (FELs) and principal component analysis (PCA) were performed to study effect of two mutations V617F and V617F/E596A on the conformations of the ATP-bound JH2. The dynamic analyses reveal that mutations affect the structural flexibility and correlated motions of the JH2, meanwhile also change the dynamics behavior of the P-loop and αC-helix of the JH2. The information from FELs unveils that mutations induce less energy states than the free JH2 and the WT one. The analyses of interaction networks uncover that mutations affect the salt bridge interactions of ATP with K581, K677 and R715 and alter hydrogen bonding interactions (HBIs) of ATP with the JH2. The changes in conformations of the JH2 and ATP-JH2 interaction networks caused by mutations in turn generate effect on the activity regulations of the JH2 on the JH1. This work is expected to provide significant theoretical helps for deeply understanding the function of the JH2 and drug design toward JAK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
10
|
Shi S, Zheng L, Ren Y, Wang Z. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023; 28:molecules28072886. [PMID: 37049650 PMCID: PMC10095679 DOI: 10.3390/molecules28072886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Linqi Zheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonglian Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
11
|
Wang L, Lu D, Wang Y, Xu X, Zhong P, Yang Z. Binding selectivity-dependent molecular mechanism of inhibitors towards CDK2 and CDK6 investigated by multiple short molecular dynamics and free energy landscapes. J Enzyme Inhib Med Chem 2023; 38:84-99. [DOI: 10.1080/14756366.2022.2135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang, PR China
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Xiaoyan Xu
- School of Science, Shandong Jiaotong University, Jinan, PR China
| | - Peihua Zhong
- College of Computer Information and Engineering, Jiangxi Agriculture University, Nanchang, PR China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
12
|
Bao HY, Wang W, Sun HB, Chen JZ. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:65-89. [PMID: 36762439 DOI: 10.1080/1062936x.2023.2165542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Probing binding modes of GDP, GTP and GNP to NRAS are of significance for understanding the regulation mechanism on the activity of RAS proteins. Four separate Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the apo, GDP-, GTP- and GNP-bound NRAS. Dynamics analyses suggest that binding of three ligands highly affects conformational states of the switch domains from NRAS, which disturbs binding of NRAS to its effectors. The analyses of free energy landscapes (FELs) indicate that binding of GDP, GTP and GNP induces more energetic states of NRAS compared to the apo NRAS but the presence of GNP makes the switch domains more ordered than binding of GDP and GNP. The information of interaction networks of ligands with NRAS reveals that the π-π interaction of residue F28 and the salt bridge interactions of K16 and D119 with ligands stabilize binding of GDP, GTP and GNP to NRAS. Meanwhile magnesium ion plays a bridge role in interactions of ligands with NRAS, which is favourable for associations of GDP, GTP and GNP with NRAS. This work is expected to provide useful information for deeply understanding the function and activity of NRAS.
Collapse
Affiliation(s)
- H Y Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Z Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
13
|
Mandour AA, Nassar IF, Abdel Aal MT, Shahin MAE, El-Sayed WA, Hegazy M, Yehia AM, Ismail A, Hagras M, Elkaeed EB, Refaat HM, Ismail NSM. Synthesis, biological evaluation, and in silico studies of new CDK2 inhibitors based on pyrazolo[3,4- d]pyrimidine and pyrazolo[4,3- e][1,2,4]triazolo[1,5- c]pyrimidine scaffold with apoptotic activity. J Enzyme Inhib Med Chem 2022; 37:1957-1973. [PMID: 35815597 PMCID: PMC9278437 DOI: 10.1080/14756366.2022.2086866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase inhibition is considered a promising target for cancer treatment for its crucial role in cell cycle regulation. Pyrazolo pyrimidine derivatives were well established for their antitumor activity via CDK2 inhibition. In this research, new series of pyrazolopyrimidine derivatives (4-15) was designed and synthesised as novel CDK2 inhibitors. The anti-proliferative activities against MCF-7, HCT-116, and HepG-2 were used to evaluate their anticancer activity as novel CDK2 inhibitors. Most of the compounds showed superior cytotoxic activity against MCF-7 and HCT-116 compared to Sorafenib. Only compounds 8, 14, and 15 showed potent activity against HepG-2. The CDK2/cyclin A2 enzyme inhibitory activity was tested for all synthesised compounds. Compound 15 showed the most significant inhibitory activity with IC50 0.061 ± 0.003 µM. It exerted remarkable alteration in Pre G1 and S phase cell cycle progression and caused apoptosis in HCT cells. In addition, the normal cell line cytotoxicity for compound 15 was assigned revealing low cytotoxic results in normal cells rather than cancer cells. Molecular docking was achieved on the designed compounds and confirmed the two essential hydrogen binding with Leu83 in CDK2 active site. In silico ADMET studies and drug-likeness showed proper pharmacokinetic properties which helped in structure requirements prediction for the observed antitumor activity.
Collapse
Affiliation(s)
- Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University (ASU), Cairo, Egypt
| | - Mohammed T Abdel Aal
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Mahmoud A E Shahin
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Wael A El-Sayed
- Chemistry Department, College of Science, Qassim University, Qassim, Saudi Arabia.,Photochemistry Department, National Research Centre, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Science, College of Pharmacy, Al Maarefa University, Riyadh, Saudi Arabia
| | - Hanan M Refaat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| |
Collapse
|
14
|
Yu YX, Wang W, Sun HB, Zhang LL, Wang LF, Yin YY. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:805-831. [PMID: 36322686 DOI: 10.1080/1062936x.2022.2140708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations V32I, I50V and I84V in the HIV-1 protease (PR) induce drug resistance towards drug amprenavir (APV). Multiple short molecular dynamics (MSMD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) method were utilized to investigate drug-resistant mechanism of V32I, I50V and I84V towards APV. Dynamic information arising from MSMD simulations suggest that V32I, I50V and I84V highly affect structural flexibility, motion modes and conformational behaviours of two flaps in the PR. Binding free energies calculated by MM-GBSA method suggest that the decrease in binding enthalpy and the increase in binding entropy induced by mutations V32I, I50V and I84V are responsible for drug resistance of the mutated PRs on APV. The energetic contributions of separate residues on binding of APV to the PR show that V32I, I50V and I84V highly disturb the interactions of two flaps with APV and mostly drive the decrease in binding ability of APV to the PR. Thus, the conformational changes of two flaps in the PR caused by V32I, I50V and I84V play key roles in drug resistance of three mutated PR towards APV. This study can provide useful dynamics information for the design of potent inhibitors relieving drug resistance.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
15
|
Wang L, Wang Y, Zhao J, Yu Y, Kang N, Yang Z. Theoretical exploration of the binding selectivity of inhibitors to BRD7 and BRD9 with multiple short molecular dynamics simulations. RSC Adv 2022; 12:16663-16676. [PMID: 35754900 PMCID: PMC9169554 DOI: 10.1039/d2ra02637f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022] Open
Abstract
Bromodomain-containing proteins 7 and 9 (BRD7 and BRD9) have been considered as potential targets of clinical drug design toward treatment of human cancers and other diseases. Multiple short molecular dynamics simulations and binding free energy predictions were carried out to decipher the binding selectivity of three inhibitors 4L2, 5U6, and 6KT toward BRD7 and BRD9. The results show that 4L2 has more favorable binding ability to BRD7 over BRD9 compared to 5U6 and 6KT, while 5U6 and 6KT possess more favorable associations with BRD9 than BRD7. Furthermore, estimations of residue-based free energy decompositions further identify that four common residue pairs, including (F155, F44), (V160, V49), (Y168, Y57) and (Y217, Y106) in (BRD7, BRD9) generate obvious binding differences with 4L2, 5U6, and 6KT, which mostly drives the binding selectivity of 4L2, 5U6, and 6KT to BRD7 and BRD9. Dynamic information arising from trajectory analysis also suggests that inhibitor bindings affect structural flexibility and motion modes, which is responsible for the partial selectivity of 4L2, 5U6, and 6KT toward BRD7 and BRD9. As per our expectation, this study theoretically provides useful hints for design of dual inhibitors with high selectivity on BRD7 and BRD9. Bromodomains (BRDs) are structurally conserved epigenetic reader modules observed in numerous chromatin- and transcription-associated proteins that have a capability to identify acetylated lysine residues.![]()
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yingxia Yu
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Nianqian Kang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Nassar IF, Abdel Aal MT, El-Sayed WA, A. E Shahin M, Elsakka EGE, Mokhtar MM, Hegazy M, Hagras M, Mandour AA, Ismail NSM. Discovery of pyrazolo[3,4- d]pyrimidine and pyrazolo[4,3- e][1,2,4]triazolo[1,5- c]pyrimidine derivatives as novel CDK2 inhibitors: synthesis, biological and molecular modeling investigations. RSC Adv 2022; 12:14865-14882. [PMID: 35702208 PMCID: PMC9112407 DOI: 10.1039/d2ra01968j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022] Open
Abstract
CDK2 inhibition is an appealing target for cancer treatment that targets tumor cells in a selective manner. A new set of small molecules featuring the privileged pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffolds (4–13) as well as the thioglycoside derivatives (14, 15) were designed, and synthesized as novel CDK2 targeting compounds. The growth of the three examined cell lines was significantly inhibited by most of the prepared compounds. Results revealed that most of the compounds showed superior cytotoxic activities against MCF-7 and HCT-116 with IC50 range (45–97 nM) and (6–99 nM), respectively, and moderate activity against HepG-2 with IC50 range of (48–90 nM) compared to sorafenib (IC50: 144, 176 and 19 nM, respectively). Of these compounds, 14 & 15 showed the best cytotoxic activities against the three cell lines with IC50 values of 45, 6, and 48 nM and 46, 7, and 48 nM against MCF-7, HCT-116 and HepG-2, respectively. Enzymatic inhibitory activity against CDK2/cyclin A2 was achieved for the most potent anti-proliferative compounds. Compounds 14, 13 and 15 revealed the most significant inhibitory activity with IC50 values of 0.057 ± 0.003, 0.081 ± 0.004 and 0.119 ± 0.007 μM, respectively compared to sorafenib (0.184 ± 0.01 μM). Compound 14 displayed potent dual activity against the examined cell lines and CDK2, and was thus selected for further investigations. It exerted a significance alteration in cell cycle progression, in addition to apoptosis induction within HCT cells. Molecular docking simulation of the designed compounds confirmed the good fit into the CDK2 active site through the essential hydrogen bonding with Leu83. In silico ADMET studies and drug-likeness studies using a Boiled Egg chart showed suitable pharmacokinetic properties which helped in structure requirement prediction for the observed antitumor activity. A new set of pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffolds (4–13) as well as the thioglycoside derivatives (14, 15) were designed, and synthesized as novel CDK2 targeting compounds.![]()
Collapse
Affiliation(s)
- Ibrahim F. Nassar
- Faculty of Specific Education, Ain Shams University (ASU), 365 Ramsis Street, Abassia, Cairo, Egypt
| | | | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Kingdom of Saudi Arabia
- Photochemistry Department, National Research Centre, El-Behouth St., Dokki, Cairo, Egypt
| | - Mahmoud A. E Shahin
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Elsayed G. E. Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Asmaa A. Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Nasser S. M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| |
Collapse
|
17
|
Li M, Liu X, Zhang S, Liang S, Zhang Q, Chen J. Deciphering binding mechanism of inhibitors to SARS-COV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Phys Chem Chem Phys 2022; 24:22129-22143. [DOI: 10.1039/d2cp03446h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pneumonia outbreak caused by the SARS-CoV-2 virus poses a serious threat to human health and the world economy. Development of safe and highly effective antiviral drugs is of great...
Collapse
|
18
|
Yu YX, Liu WT, Li HY, Wang W, Sun HB, Zhang LL, Wu SL. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:889-915. [PMID: 34551634 DOI: 10.1080/1062936x.2021.1979647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is thought to be efficient targets of anti-AIDS drug design. Molecular dynamics (MD) simulations and multiple post-processing analysis technologies were applied to decipher molecular mechanism underlying binding of three drugs Lopinavir (LPV), Nelfinavir (NFV) and Atazanavir (ATV) to the PR. Binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) suggest that compensation between binding enthalpy and entropy plays a vital role in binding of drugs to PR. Dynamics analyses show that binding of LPV, NFV and ATV highly affects structural flexibility, motion modes and dynamics behaviour of the PR, especially for two flaps. Computational alanine scanning and interaction network analysis verify that although three drugs have structural difference, they share similar binding modes to the PR and common interaction clusters with the PR. The current findings also confirm that residues located interaction clusters, such as Asp25/Asp25', Gly27/Gly27', Ala28/Ala28', Asp29, Ile47/Ile47', Gly49/Gly49', Ile50/Ile50', Val82/Val82' and Ile84/Ile84, can be used as efficient targets of clinically available inhibitors towards the PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- Shuifa Qilu Cultural Tourism Development Co., Ltd, Shuifa Ecological Industry Group, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
19
|
Li HX, Yang WY, Li LP, Zhou H, Li WY, Ma Y, Wang RL. Molecular dynamics study of CDC25B R492L mutant causing the activity decrease of CDC25B. J Mol Graph Model 2021; 109:108030. [PMID: 34509094 DOI: 10.1016/j.jmgm.2021.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 11/25/2022]
Abstract
Cell division cycle 25B (CDC25B) was responsible for regulating the various stages of cell division in the cell cycle. R492L was one of the common types of CDC25B mutants. Researches showed that compared to CDC25BWT, CDC25BR492L mutant had a ∼100-fold reduction in the rate constant for forming phosphatase intermediate (k2). However, the molecular basis of how the CDC25BR492L mutant influenced the process of binding between CDC25B and CDK2/CyclinA was not yet known. Therefore, the optimizations of three-dimensional structure of the CDC25BWT-CDK2/CyclinA system and the CDC25BR492L-CDK2/CyclinA system were constructed by ZDOCK and RDOCK, and five methods were employed to verify the reasonability of the docking structure. Then the molecular dynamics simulations on the two systems were performed to explore the reason why CDC25BR492L mutant caused the weak interactions between CDC25BR492L and CDK2/CyclinA, respectively. The remote docking site (Arg488-Tyr497) and the second active site (Lys538-Arg544) of CDC25B were observed to have high fluctuations in the CDC25BR492L-CDK2/CyclinA system with post-analysis, where the high fluctuation of these two regions resulted in weak interactions between CD25B and CDK2. In addition, Asp38-Glu42 and Asp206-Asp210 of CDK2 showed the slightly descending fluctuation, and CDK2 revealed an enhanced the self-interaction, which made CDK2 keep a relatively stable state in the CDC25BR492L-CDK2/CyclinA system. Finally, Leu492 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BR492L and CDK2 in the CDC25BR492L-CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately offered a helpful understanding of the weak interactions between CDC25BR492L and CDK2.
Collapse
Affiliation(s)
- Hao-Xin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wen-Yu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Li-Peng Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hui Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wei-Ya Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| |
Collapse
|