1
|
Kim YC, Jeong BH. The first report of polymorphisms and genetic characteristics of the prion protein gene (PRNP) in horses. Prion 2018; 12:245-252. [PMID: 30165784 DOI: 10.1080/19336896.2018.1513316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prion diseases have a wide host range, but prion-infected cases have never been reported in horses. Genetic polymorphisms that can directly impact the structural stability of horse prion protein have not been investigated thus far. In addition, we noticed that previous studies focusing on horse-specific amino acids and secondary structure predictions of prion protein were performed for limited parts of the protein. In this study, we found genetic polymorphisms in the horse prion protein gene (PRNP) in 201 Thoroughbred horses. The identified polymorphism was assessed to determine whether this polymorphism impedes stability of protein using PolyPhen-2, PROVEAN and PANTHER. In addition, we evaluated horse-specific amino acids in horse and mouse prion proteins using same methods. We found only one single nucleotide polymorphism (SNP) in the horse prion protein, and three annotation tools predicted that the SNP is benign. In addition, horse-specific amino acids showed different effects on horse and mouse prion proteins, respectively. Abbreviations: PRNP: prion protein gene; SNP: single nucleotide polymorphism; CJD: Creutzfeldt-Jakob disease; CWD: chronic wasting disease; TME: transmissible mink encephalopathy; FSE: feline spongiform encephalopathy; MD: molecular dynamics; ER: endoplasmic reticulum; GPI: glycosylphosphatidylinositol; NMR: nuclear magnetic resonance; ORF: open reading frame; GWAS: genome-wide association study; NAPA: non-adaptive prion amplification; HMM: hidden Markov model; NCBI: National Center for Biotechnology Information.
Collapse
Affiliation(s)
- Yong-Chan Kim
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Republic of Korea
| | - Byung-Hoon Jeong
- a Korea Zoonosis Research Institute , Chonbuk National University , Iksan , Republic of Korea.,b Department of Bioactive Material Sciences , Chonbuk National University , Jeonju , Republic of Korea
| |
Collapse
|
2
|
Yahr R, Schoch CL, Dentinger BTM. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150336. [PMID: 27481788 PMCID: PMC4971188 DOI: 10.1098/rstb.2015.0336] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/15/2022] Open
Abstract
The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'.
Collapse
Affiliation(s)
- Rebecca Yahr
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, UK
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Bryn T M Dentinger
- Royal Botanic Gardens Kew, Richmond, Surrey, UK Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cledwyn Building, Penglais, Aberystwyth SY23 3DD, UK
| |
Collapse
|
3
|
Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 2014; 79:132-68. [PMID: 24747130 PMCID: PMC4185256 DOI: 10.1016/j.ympev.2014.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/02/2014] [Accepted: 04/02/2014] [Indexed: 11/28/2022]
Abstract
The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.
Collapse
Affiliation(s)
| | - Frank Kauff
- FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Filip Högnabba
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| | - Jeffrey C Oliver
- Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA
| | - Katalin Molnár
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Emily Fraker
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Ester Gaya
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Josef Hafellner
- Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria
| | | | - Cécile Gueidan
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | | | | | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Robert Lücking
- Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Curtis Björk
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Harrie J M Sipman
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany
| | - Ana Rosa Burgaz
- Departamento de Biologı́a Vegetal I, Facultad de CC. Biológicas, Universidad Complutense de Madrid, E-28040-Madrid, Spain
| | - Arne Thell
- Botanical Museum, Lund University, Box 117, SE-221 00 Lund, Sweden
| | - Alfredo Passo
- BioLiq Laboratorio de Bioindicadores y Liquenología, Centro Regional Universitario Bariloche, INIBIOMA, Universidad Nacional del Comahue, Bariloche, 8400RN, Argentina
| | - Leena Myllys
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| | - Trevor Goward
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samantha Fernández-Brime
- Department of Plant Biology (Botany Unit), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Geir Hestmark
- CEES, Department of Biosciences, University of Oslo, PB 1066 Blindern, 0315 Oslo, Norway
| | - James Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, USA
| | - H Thorsten Lumbsch
- Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Michaela Schmull
- Harvard University Herbaria, Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, MD 20892-6510, USA
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - David R Maddison
- Center for Genome Research and Biocomputing, Oregon State University, 3021 Agriculture and Life Sciences Building, Corvallis, OR 97331-7303, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, 1140 E. South Campus Drive, Forbes 303, Tucson, AZ 85721, USA
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Soili Stenroos
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| |
Collapse
|
4
|
Talevich E, Invergo BM, Cock PJA, Chapman BA. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics 2012; 13:209. [PMID: 22909249 PMCID: PMC3468381 DOI: 10.1186/1471-2105-13-209] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/08/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ongoing innovation in phylogenetics and evolutionary biology has been accompanied by a proliferation of software tools, data formats, analytical techniques and web servers. This brings with it the challenge of integrating phylogenetic and other related biological data found in a wide variety of formats, and underlines the need for reusable software that can read, manipulate and transform this information into the various forms required to build computational pipelines. RESULTS We built a Python software library for working with phylogenetic data that is tightly integrated with Biopython, a broad-ranging toolkit for computational biology. Our library, Bio.Phylo, is highly interoperable with existing libraries, tools and standards, and is capable of parsing common file formats for phylogenetic trees, performing basic transformations and manipulations, attaching rich annotations, and visualizing trees. We unified the modules for working with the standard file formats Newick, NEXUS and phyloXML behind a consistent and simple API, providing a common set of functionality independent of the data source. CONCLUSIONS Bio.Phylo meets a growing need in bioinformatics for working with heterogeneous types of phylogenetic data. By supporting interoperability with multiple file formats and leveraging existing Biopython features, this library simplifies the construction of phylogenetic workflows. We also provide examples of the benefits of building a community around a shared open-source project. Bio.Phylo is included with Biopython, available through the Biopython website, http://biopython.org.
Collapse
Affiliation(s)
- Eric Talevich
- Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602, USA
| | - Brandon M Invergo
- Institute of Evolutionary Biology (CSIC-UPF), CEXS-UPF-PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Peter JA Cock
- James Hutton Institute, InvergowrieDundee DD2 5DA, UK
| | - Brad A Chapman
- Harvard School of Public Health Bioinformatics Core, 655 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
5
|
Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW. A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 2011; 64:1-15S10. [PMID: 20169021 PMCID: PMC2816964 DOI: 10.3114/sim.2009.64.01] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.
Collapse
Affiliation(s)
- C L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nilsson RH, Veldre V, Wang Z, Eckart M, Branco S, Hartmann M, Quince C, Godhe A, Bertrand Y, Alfredsson JF, Larsson KH, Kõljalg U, Abarenkov K. A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0086-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hestmark G, Miadlikowska J, Kauff F, Fraker E, Molnar K, Lutzoni F. Single origin and subsequent diversification of central Andean endemic Umbilicaria species. Mycologia 2010; 103:45-56. [PMID: 20943548 DOI: 10.3852/10-012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied an Andean endemic group of species of the lichen-forming fungal genus Umbilicaria from the subalpine and low-alpine zone, with their biogeographic center in Bolivia and Peru. A number of species and varieties have been described from this element, but apparent instability in several morphological traits has made it difficult to precisely delimit taxa. Based on DNA sequences of nuclear ITS, LSU and mitochondrial SSU from extensive collections from Argentina, Bolivia, Chile, Colombia, Ecuador and Peru, we present here a molecular phylogenetic analysis of this Andean endemic element within genus Umbilicaria. All analyses (MP, ML and Bayesian) support a single origin for the element and a division into two major groups characterized by different apothecium types: the Umbilicaria dichroa group and U. calvescens group. Taxa U. krempelhuberi, U. peruviana and U. subcalvescens are nested withinn U. calvescens and are treated as conspecific with the latter species. The endemic element shares a most recent common ancestor with the Umbilicaria vellea group, which has a worldwide distribution and contains several asexually reproducing (sorediate) species. Independent reversals to sexual reproduction might explain the evolution of two types of apothecia in this monophyletic endemic lineage. A number of cosmopolitan, mostly high-alpine, species of Umbilicaria also present in the central Andes are related only remotely to the endemic element and do not exhibit speciation into endemics. Because the An-dean element dominates the Umbilicaria habitats of the low- and subalpine zones we propose that the founder colonized the Andes at a time when the mountains had not yet reached their current elevation while the high-alpine species arrived more recently.
Collapse
Affiliation(s)
- Geir Hestmark
- Department of Biology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
8
|
Rossman AY, Schoch CL, Farr DF, Nishijima K, Keith L, Goenaga R. Dolabra nepheliae on rambutan and lychee represents a novel lineage of phytopathogenic Eurotiomycetes. MYCOSCIENCE 2010; 51:300-309. [PMID: 20802819 PMCID: PMC2929132 DOI: 10.1007/s10267-010-0042-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rambutan (Nephelium lappaceum) and lychee (Litchi chinensis) are tropical trees in the Sapindaceae that produce delicious edible fruits and are increasingly cultivated in tropical regions. These trees are afflicted with a stem canker disease associated with the ascomycete Dolabra nepheliae. Previously known from Asia and Australia, this fungus was recently reported from Hawaii and Puerto Rico. The sexual and asexual states of Dolabra nepheliae are redescribed and illustrated. In addition, the ITS and large subunit of the nuclear ribosomal DNA plus fragments from the genes RPB2, TEF1, and the mitochondrial small ribosomal subunit were sequenced for three isolates of D. nepheliae and compared with other sequences of ascomycetes. It was determined that D. nepheliae represents a new lineage within the Eurotiomycetes allied with Phaeomoniella chlamydospora, the causal agent of Petri grapevine decline.
Collapse
Affiliation(s)
- Amy Y. Rossman
- Systematic Mycology and Microbiology Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | - Conrad L. Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, MD 20892, USA
| | - David F. Farr
- Systematic Mycology and Microbiology Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | - Kate Nishijima
- Tropical Crop and Commodity Protection Research Unit, PBARC, USDA-ARS, Hilo, HI 96720, USA
| | - Lisa Keith
- Tropical Plant Genetic Resources and Disease Research Unit, PBARC, USDA-ARS, Hilo, HI 96720, USA
| | - Ricardo Goenaga
- Tropical Agriculture Research Station, USDA-ARS, Mayaguez, PR 00680, USA
| |
Collapse
|
9
|
The search for the fungal tree of life. Trends Microbiol 2009; 17:488-97. [PMID: 19782570 DOI: 10.1016/j.tim.2009.08.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/22/2009] [Accepted: 08/17/2009] [Indexed: 01/16/2023]
Abstract
The Fungi comprise a diverse kingdom of eukaryotes that are characterized by a typically filamentous but sometimes unicellular vegetative form, and heterotrophic, absorptive nutrition. Their simple morphologies and variable ecological strategies have confounded efforts to elucidate their limits, phylogenetic relationships, and diversity. Here we review progress in developing a phylogenetic classification of Fungi since Darwin's On the Origin of Species. Knowledge of phylogenetic relationships has been driven by the available characters that have ranged from morphological and ultrastructural to biochemical and genomic. With the availability of multiple gene phylogenies a well-corroborated phylogenetic classification has now begun to emerge. In the process some fungus-like heterotrophs have been shown to belong elsewhere, and several groups of enigmatic eukaryotic microbes have been added to the Fungi.
Collapse
|
10
|
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25:1422-3. [PMID: 19304878 PMCID: PMC2682512 DOI: 10.1093/bioinformatics/btp163] [Citation(s) in RCA: 3275] [Impact Index Per Article: 204.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. AVAILABILITY Biopython is freely available, with documentation and source code at (www.biopython.org) under the Biopython license.
Collapse
|
11
|
Zhang Y, Schoch C, Fournier J, Crous P, de Gruyter J, Woudenberg J, Hirayama K, Tanaka K, Pointing S, Spatafora J, Hyde K. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 2009; 64:85-102S5. [PMID: 20169024 PMCID: PMC2816967 DOI: 10.3114/sim.2009.64.04] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz.Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceaes. str., Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic.
Collapse
Affiliation(s)
- Y. Zhang
- Division of Microbiology, School of Biological Sciences, The University of
Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| | - C.L. Schoch
- National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda,
Maryland 20892-6510, U.S.A.
| | | | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
| | - J. de Gruyter
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
- Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The
Netherlands
| | - J.H.C. Woudenberg
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
| | - K. Hirayama
- Faculty of Agriculture & Life Sciences, Hirosaki University,
Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - K. Tanaka
- Faculty of Agriculture & Life Sciences, Hirosaki University,
Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - S.B. Pointing
- Division of Microbiology, School of Biological Sciences, The University of
Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| | - J.W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University,
Corvallis, Oregon 93133, U.S.A.
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai
57100, Thailand
- International Fungal Research & Development Centre, The Research
Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan,
P.R. China 650034
| |
Collapse
|
12
|
Marthey S, Aguileta G, Rodolphe F, Gendrault A, Giraud T, Fournier E, Lopez-Villavicencio M, Gautier A, Lebrun MH, Chiapello H. FUNYBASE: a FUNgal phYlogenomic dataBASE. BMC Bioinformatics 2008; 9:456. [PMID: 18954438 PMCID: PMC2600828 DOI: 10.1186/1471-2105-9-456] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background The increasing availability of fungal genome sequences provides large numbers of proteins for evolutionary and phylogenetic analyses. However the heterogeneity of data, including the quality of genome annotation and the difficulty of retrieving true orthologs, makes such investigations challenging. The aim of this study was to provide a reliable and integrated resource of orthologous gene families to perform comparative and phylogenetic analyses in fungi. Description FUNYBASE is a database dedicated to the analysis of fungal single-copy genes extracted from available fungal genomes sequences, their classification into reliable clusters of orthologs, and the assessment of their informative value for phylogenetic reconstruction based on amino acid sequences. The current release of FUNYBASE contains two types of protein data: (i) a complete set of protein sequences extracted from 30 public fungal genomes and classified into clusters of orthologs using a robust automated procedure, and (ii) a subset of 246 reliable ortholog clusters present as single copy genes in 21 fungal genomes. For each of these 246 ortholog clusters, phylogenetic trees were reconstructed based on their amino acid sequences. To assess the informative value of each ortholog cluster, each was compared to a reference species tree constructed using a concatenation of roughly half of the 246 sequences that are best approximated by the WAG evolutionary model. The orthologs were classified according to a topological score, which measures their ability to recover the same topology as the reference species tree. The full results of these analyses are available on-line with a user-friendly interface that allows for searches to be performed by species name, the ortholog cluster, various keywords, or using the BLAST algorithm. Examples of fruitful utilization of FUNYBASE for investigation of fungal phylogenetics are also presented. Conclusion FUNYBASE constitutes a novel and useful resource for two types of analyses: (i) comparative studies can be greatly facilitated by reliable clusters of orthologs across sets of user-defined fungal genomes, and (ii) phylogenetic reconstruction can be improved by identifying genes with the highest informative value at the desired taxonomic level.
Collapse
Affiliation(s)
- Sylvain Marthey
- UR MIG, INRA, Bâtiment 233 Domaine de Vilvert 78350, Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|