1
|
Jian F, Zhang X. Cordycepin Alleviates Lipopolysaccharides-Induced Preeclampsia-Like Impairments in Rats. Immunol Invest 2025; 54:68-82. [PMID: 39494953 DOI: 10.1080/08820139.2024.2418572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Preeclampsia is a serious pregnancy complication that can lead to life-threatening conditions such as seizures, strokes, and even death. A dysregulated inflammatory response in the placenta plays a crucial role in the development of preeclampsia. Cordycepin, known for its anti-inflammatory and antioxidant properties, was the focus of this study, which aimed to investigate its effects on preeclampsia. METHODS A preeclampsia-like rat model was established via tail vein injection of lipopolysaccharides (LPS) at a dose of 1 μg/kg in pregnant rats. These rats were then treated with cordycepin at doses of 5, 25, or 50 mg/kg from embryonic day 6 (E6) today 18 (E18). Systolic blood pressures and urinary protein levels were monitored, and pregnancy outcomes, such as fetal body length and weight, were measured. The expression of target genes or proteins was assessed by qPCR, ELISA, and Western blot. RESULTS Our findings revealed that cordycepin significantly reduced systolic blood pressure and proteinuria in preeclampsia-like rats. Additionally, cordycepin improved pregnancy outcomes, as shown by increased fetal body length and weight. The treatment also lowered serum sFlt-1 levels, elevated PIGF levels, decreased placental pro-inflammatory cytokine levels (IL-1β, TNF-α, IL-6, MCP-1, and MIP-2), and raised levels of anti-inflammatory cytokine IL-10 level in preeclampsia-like rats. Furthermore, cordycepin helped restore macrophage population imbalances, increasing M1-type macrophage markers (iNOS, TNF-α, and IL-1β) and reducing M2-type macrophage markers (Arg 1, IL-10, and TGF-β). CONCLUSION This study suggests that cordycepin alleviates LPS-induced preeclampsia by reducing placental inflammation and correcting the M1/M2 macrophage imbalance, offering potential therapeutic benefits for managing preeclampsia.
Collapse
Affiliation(s)
- Feng Jian
- Obstetrics Department, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiao Zhang
- Obstetrics Department, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
2
|
Li Y, Zhu Q, He R, Du J, Qin X, Li Y, Liang X, Wang J. The NFκB Signaling Pathway Is Involved in the Pathophysiological Process of Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:334-345. [PMID: 38618576 PMCID: PMC11006561 DOI: 10.1055/a-2273-6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
The high prevalence of preeclampsia (PE) is a major cause of maternal and fetal mortality and affects the long-term prognosis of both mother and baby. Termination of pregnancy is currently the only effective treatment for PE, so there is an urgent need for research into its pathogenesis and the development of new therapeutic approaches. The NFκB family of transcription factors has an essential role in inflammation and innate immunity. In this review, we summarize the role of NFκB in normal and preeclampsia pregnancies, the role of NFκB in existing treatment strategies, and potential NFκB treatment strategies.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Tossetta G, Fantone S, Piani F, Crescimanno C, Ciavattini A, Giannubilo SR, Marzioni D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells 2023; 12:1545. [PMID: 37296665 PMCID: PMC10252212 DOI: 10.3390/cells12111545] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Placentation is a key and tightly regulated process that ensures the normal development of the placenta and fetal growth. Preeclampsia (PE) is a hypertensive pregnancy-related disorder involving about 5-8% of all pregnancies and clinically characterized by de novo maternal hypertension and proteinuria. In addition, PE pregnancies are also characterized by increased oxidative stress and inflammation. The NRF2/KEAP1 signaling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. ROS activate NRF2, allowing its binding to the antioxidant response element (ARE) region present in the promoter of several antioxidant genes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase that neutralize ROS, protecting cells against oxidative stress damages. In this review, we analyze the current literature regarding the role of the NRF2/KEAP1 pathway in preeclamptic pregnancies, discussing the main cellular modulators of this pathway. Moreover, we also discuss the main natural and synthetic compounds that can regulate this pathway in in vivo and in vitro models.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Federica Piani
- Cardiovascular Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Caterina Crescimanno
- School of Human and Social Science, University “Kore” of Enna, 94100 Enna, Italy;
| | - Andrea Ciavattini
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| |
Collapse
|
4
|
Rauf A, Abu-Izneid T, Imran M, Hemeg HA, Bashir K, Aljohani ASM, Aljohani MSM, Alhumaydhi FA, Khan IN, Bin Emran T, Gondal TA, Nath N, Ahmad I, Thiruvengadam M. Therapeutic Potential and Molecular Mechanisms of the Multitargeted Flavonoid Fisetin. Curr Top Med Chem 2023; 23:2075-2096. [PMID: 37431899 DOI: 10.2174/1568026623666230710162217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Flavonoids effectively treat cancer, inflammatory disorders (cardiovascular and nervous systems), and oxidative stress. Fisetin, derived from fruits and vegetables, suppresses cancer growth by altering cell cycle parameters that lead to cell death and angiogenesis without affecting healthy cells. Clinical trials are needed in humans to prove the effectiveness of this treatment for a wide range of cancers. According to the results of this study, fisetin can be used to prevent and treat a variety of cancers. Despite early detection and treatment advances, cancer is the leading cause of death worldwide. We must take proactive steps to reduce the risk of cancer. The natural flavonoid fisetin has pharmacological properties that suppress cancer growth. This review focuses on the potential drug use of fisetin, which has been extensively explored for its cancer-fighting ability and other pharmacological activities such as diabetes, COVID-19, obesity, allergy, neurological, and bone disorders. Researchers have focused on the molecular function of fisetin. In this review, we have highlighted the biological activities against chronic disorders, including cancer, metabolic illnesses, and degenerative illnesses, of the dietary components of fisetin.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, Abu Dhabi, United Arab Emirates
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Punjab, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra, 41411, Saudi Arabia
| | - Kashif Bashir
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mona S M Aljohani
- Pharmaceutical Care Department, King Saud Hospital, Ministry of Health, Unaizah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, 3125, Australia
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
5
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|