1
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
2
|
Granhøj J, Nøhr TK, Hinrichs GR, Rasmussen M, Svenningsen P. Reverse Phenotypes of Patients with Genetically Confirmed Liddle Syndrome. Clin J Am Soc Nephrol 2024; 19:610-619. [PMID: 38265765 PMCID: PMC11108250 DOI: 10.2215/cjn.0000000000000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Liddle syndrome was initially characterized by hypertension, hypokalemia, metabolic alkalosis, and suppressed plasma renin and aldosterone, resulting from gain-of-function variants in the epithelial Na + channel (ENaC). Efficient treatment with ENaC inhibitors is available, but the phenotypic spectrum of genetically confirmed Liddle syndrome is unknown, and some patients may remain undiagnosed and at risk of inefficient treatment. In this study, we used a reverse phenotyping approach to investigate the Liddle syndrome phenotypic spectrum and genotype-phenotype correlations. METHODS Pubmed, Embase, Scopus, and the Human Gene Mutation Database were searched for articles reporting Liddle syndrome variants. The genetic variants were systematically classified to identify patients with genetically confirmed Liddle syndrome. We identified 62 articles describing 45 unique variants within 86 Liddle syndrome families, and phenotypic data were pooled for 268 patients with confirmed Liddle syndrome. RESULTS The Liddle syndrome variants localized to exon 13 of SCNN1B and SCNN1G , disrupting the PPPxY motif critical for downregulating ENaC activity. Hypertension sensitive to ENaC inhibition was present in 97% of adults carrying Liddle syndrome variants while hypokalemia, metabolic alkalosis, and plasma renin and aldosterone suppression showed incomplete penetrance. In addition, 95% and 55% of patients had a family history of hypertension or cerebrovascular events, respectively. The genotype had minor phenotypic effects; however, probands compared with relatives showed significant phenotypic discrepancies consistent with selection bias for initial genetic screening. CONCLUSIONS Patients with genetically confirmed Liddle syndrome displayed a phenotypic spectrum, with ENaC-sensitive hypertension and family history of hypertension being the most common features. The phenotype seemed independent of the specific gene or variant type involved.
Collapse
Affiliation(s)
- Jeff Granhøj
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Thomas K. Nøhr
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Gitte R. Hinrichs
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Guo W, Ji P, Xie Y. Genetic diagnosis and treatment of hereditary renal tubular disease with hypokalemia and alkalosis. J Nephrol 2023; 36:575-591. [PMID: 35994232 DOI: 10.1007/s40620-022-01428-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Renal tubules play an important role in maintaining water, electrolyte, and acid-base balance. Renal tubule dysfunction can cause electrolyte disorders and acid-base imbalance. Clinically, hypokalemic renal tubular disease is the most common tubule disorder. With the development of molecular genetics and gene sequencing technology, hereditary renal tubular diseases have attracted attention, and an increasing number of pathogenic genes related to renal tubular diseases have been discovered and reported. Inherited renal tubular diseases mainly occur due to mutations in genes encoding various specific transporters or ion channels expressed on the tubular epithelial membrane, leading to dysfunctional renal tubular reabsorption, secretion, and excretion. An in-depth understanding of the molecular genetic basis of hereditary renal tubular disease will help to understand the physiological function of renal tubules, the mechanism by which the kidney maintains water, electrolyte, and acid-base balance, and the relationship between the kidney and other systems in the body. Meanwhile, understanding these diseases also improves our understanding of the pathogenesis of hypokalemia, alkalosis and other related diseases and ultimately promotes accurate diagnostics and effective disease treatment. The present review summarizes the most common hereditary renal tubular diseases (Bartter syndrome, Gitelman syndrome, EAST syndrome and Liddle syndrome) characterized by hypokalemia and alkalosis. Further detailed explanations are provided for pathogenic genes and functional proteins, clinical manifestations, intrinsic relationship between genotype and clinical phenotype, diagnostic clues, differential diagnosis, and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Wenkai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China
| | - Yuansheng Xie
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People's Republic of China.
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
4
|
Chen M, Lv X, Li J, Guo M, Ma S. Clinical and genetic characteristics of the patients with hypertension and hypokalemia carrying a novel SCNN1A mutation. Scand J Clin Lab Invest 2022; 82:576-580. [PMID: 36336351 DOI: 10.1080/00365513.2022.2140454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this study was to clinically and genetically characterize a pedigree with Liddle syndrome (LS). A LS pedigree comprising with one proband and seven family members was enrolled. The subjects' symptoms, laboratory results and genotypes were analyzed. Peripheral venous samples were collected from the subjects, and genomic DNA was extracted. DNA library construction and exome capture were performed on an Illumina HiSeq 4000 platform. The selected variant sites were validated using Sanger sequencing. The mutation effects were investigated using prediction tools. The proband and her paternal male family members had mild hypertension, hypokalemia and muscle weakness, including the absence of low renin and low aldosterone. Genetic analysis revealed that the proband carried a compound heterozygous mutation in SCNN1A, a novel heterozygous mutation, c.1130T > G (p.Ile377Ser) and a previously characterized polymorphism, c.1987A > G (p.Thr633Ala). The novel mutation site was inherited in an autosomal dominant manner and was predicted by in silico tools to exert a damaging effect. Alterations in the SCNN1A domain were also predicted by protein structure modeling. After six months of follow-up, treatment had significantly improved the patient's limb weakness and electrolyte levels. The novel mutation c.1130T > G of the SCNN1A gene was detected in the pedigree with LS. The clinical manifestations of the pedigree were described, which expand the phenotypic spectrum of LS. This result of this study also emphasizes the value of genetic testing for diagnosing LS.
Collapse
Affiliation(s)
- Mengzi Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xi Lv
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiwu Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Manli Guo
- Department of Endocrinology and Metabolism, The Affiliated Suqian Hospital of Xuzhou Medical University, and Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Shaogang Ma
- Department of Endocrinology and Metabolism, Laibin People's Hospital, Laibin, China
| |
Collapse
|
5
|
Khandelwal P, Deinum J. Monogenic forms of low-renin hypertension: clinical and molecular insights. Pediatr Nephrol 2022; 37:1495-1509. [PMID: 34414500 DOI: 10.1007/s00467-021-05246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Monogenic disorders of hypertension are a distinct group of diseases causing dysregulation of the renin-angiotensin-aldosterone system and are characterized by low plasma renin activity. These can chiefly be classified as causing (i) excessive aldosterone synthesis (familial hyperaldosteronism), (ii) dysregulated adrenal steroid metabolism and action (apparent mineralocorticoid excess, congenital adrenal hyperplasia, activating mineralocorticoid receptor mutation, primary glucocorticoid resistance), and (iii) hyperactivity of sodium and chloride transporters in the distal tubule (Liddle syndrome and pseudohypoaldosteronism type 2). The final common pathway is plasma volume expansion and catecholamine/sympathetic excess that causes urinary potassium wasting; hypokalemia and early-onset refractory hypertension are characteristic. However, several single gene defects may show phenotypic heterogeneity, presenting with mild hypertension with normal electrolytes. Evaluation is based on careful attention to family history, physical examination, and measurement of blood levels of potassium, renin, and aldosterone. Genetic sequencing is essential for precise diagnosis and individualized therapy. Early recognition and specific management improves prognosis and prevents long-term sequelae of severe hypertension.
Collapse
Affiliation(s)
- Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Bustos-Merlo A, Rosales-Castillo A, Jaén-Águila F. [Monogenic form of secondary arterial hypertension]. HIPERTENSION Y RIESGO VASCULAR 2022; 39:135-137. [PMID: 35660099 DOI: 10.1016/j.hipert.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple diagnostic entities are included among the causes of secondary arterial hypertension, so an appropriate screening is essential to diagnose potentially treatable pathologies. Genetic syndromes occupy a small percentage of these causes. The latter group includes Liddle syndrome, a rare genetic disease with autosomal dominant inheritance, caused by gain-of-function mutations in the genes that code for the epithelial sodium channel (ENaC), involved in sodium reabsorption in the distal renal tubules. The presence of a family history of arterial hypertension with onset at an early age and hypokalemia in some of them should lead to the suspicion of this genetic disorder, which must be confirmed with genetic tests. We describe a case, genetically confirmed, in which hypertension refractory to conventional treatment is the only manifestation of said syndrome, making diagnosis difficult and delayed until adulthood.
Collapse
Affiliation(s)
- A Bustos-Merlo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España.
| | - A Rosales-Castillo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España
| | - F Jaén-Águila
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, Granada, España
| |
Collapse
|
7
|
Mareš Š, Filipovský J, Vlková K, Pešta M, Černá V, Hrabák J, Mlíková Seidlerová J, Mayer O. A novel nonsense mutation in the β-subunit of the epithelial sodium channel causing Liddle syndrome. Blood Press 2021; 30:291-299. [PMID: 34223773 DOI: 10.1080/08037051.2021.1942785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Liddle syndrome is a hereditary form of arterial hypertension caused by mutations in the genes coding of the epithelial sodium channel - SCNN1A, SCNN1B and SCNN1G. It is characterised by early onset of hypertension and variable biochemical features such as hypokalaemia and low plasma concentrations of renin and aldosterone. Phenotypic variability is large and, therefore, LS is probably underdiagnosed. Our objective was to examine a family suspected from Liddle syndrome including genetic testing and evaluate clinical and biochemical features of affected family members. MATERIALS AND METHODS Thirteen probands from the Czech family, related by blood, underwent physical examination, laboratory tests, and genetic testing. Alleles of SCNN1B and SCNN1G genes were examined by PCR amplification and Sanger sequencing of amplicons. RESULTS We identified a novel mutation in the β-subunit of an epithelial sodium channel coded by the SCNN1B gene, causing the nonsense mutation in the protein sequence p.Tyr604*. This mutation was detected in 7 members of the family. The mutation carriers differed in the severity of hypertension and hypokalaemia which appeared only after diuretics in most of them; low aldosterone level (< 0.12 nmol/l) was, however, present in all. CONCLUSIONS This finding expands the spectrum of known mutations causing Liddle syndrome. Hypoaldosteronemia was 100% sensitive sign in the mutation carriers. Low levels are observed especially in the Caucasian population reaching 96% sensitivity. Assessment of plasma aldosterone concentration is helpful for differential diagnosis of arterial hypertension. CONDENSED ABSTRACT Liddle syndrome is a hereditary form of arterial hypertension caused by mutations in the genes encoding the epithelial sodium channel's α-, β- and γ-subunit. It is usually manifested by early onset of hypertension accompanied by low potassium and aldosterone levels. We performed a physical examination, laboratory tests and genetic screening in 13 members of a Czech family. We found a new mutation of the SCNN1B gene which encodes the β-subunit of the epithelial sodium channel. We describe the variability of each family member phenotype and point out the relevance of using aldosterone levels as a high sensitivity marker of Liddle syndrome in Caucasians.
Collapse
Affiliation(s)
- Štěpán Mareš
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Filipovský
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kateřina Vlková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martin Pešta
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Institute of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Václava Černá
- Institute of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jitka Mlíková Seidlerová
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Otto Mayer
- Second Department of Internal Medicine, University Hospital, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
8
|
Brower RK, Ghlichloo IA, Shabgahi V, Elsholz D, Menon RK, Vyas AK. Liddle Syndrome due to a Novel c.1713 Deletion in the Epithelial Sodium Channel β-Subunit in a Normotensive Adolescent. AACE Clin Case Rep 2020; 7:65-68. [PMID: 33851023 PMCID: PMC7924163 DOI: 10.1016/j.aace.2020.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Liddle syndrome (LS) is a rare autosomal dominant condition secondary to a gain-of-function mutation affecting the epithelial sodium channels (ENaCs) in the distal nephron. It presents with early-onset hypertension, hypokalemia, and metabolic alkalosis in the face of hyporeninemia and hypoaldosteronism. We report a novel mutation affecting the ENaCs in a normotensive adolescent with LS. Methods We describe a pediatric case of LS with a novel mutation and review the condition’s presentation and management. To date, 31 different mutations in the β- or γ-subunit of ENaCs have been reported as associated with LS. Results We describe a 16-year-old girl presenting with muscle cramps with a strong family history of hypertension and hypokalemia. Initial investigations revealed hypokalemia together with hypoaldosteronism and hyporeninemia. Subsequent genetic testing revealed a novel mutation in SCNN1B (deletion: c.1713delC), leading to the premature termination of the sodium channel epithelial 1 subunit-β protein and the LS phenotype. Treatment with triamterene (50 mg, twice daily) and potassium chloride (20 mEq, once daily) normalized the serum potassium and led to resolution of her muscle cramps. Conclusion It is essential to consider investigating the presence of rare genetic syndromes, like LS, when a patient presents with hypokalemia. Further studies are needed to understand the variable presentation of this condition.
Collapse
Affiliation(s)
- Raven K. Brower
- College of Medicine, California Northstate University, Elk Grove, California
| | - Ida A. Ghlichloo
- College of Medicine, California Northstate University, Elk Grove, California
| | - Venus Shabgahi
- College of Medicine, California Northstate University, Elk Grove, California
| | | | - Ram K. Menon
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Arpita K. Vyas
- College of Medicine, California Northstate University, Elk Grove, California
- Address correspondence and reprint requests to Dr Arpita K Vyas, Elk Grove, CA 95757.
| |
Collapse
|
9
|
Fan P, Pan XC, Zhang D, Yang KQ, Zhang Y, Tian T, Luo F, Ma WJ, Liu YX, Wang LP, Zhang HM, Song L, Cai J, Zhou XL. Pediatric Liddle Syndrome Caused by a Novel SCNN1G Variant in a Chinese Family and Characterized by Early-Onset Hypertension. Am J Hypertens 2020; 33:670-675. [PMID: 32161960 PMCID: PMC7368168 DOI: 10.1093/ajh/hpaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Liddle syndrome (LS), an autosomal dominant disorder, is a common monogenic hypertension in pediatrics. In this study, we reported a novel SCNN1G variant in a Chinese family with pediatric LS, and conduct a systematic review of epithelial sodium channel (ENaC)-gene-positive LS cases to conclude the clinical genetic features of LS in childhood. METHODS Next-generation sequencing and in silico analysis were performed in the proband to discover candidate variants. Sanger sequencing was used to identify the predicted likely pathogenic variant. LS patients in this family were treated with amiloride. The Medline database was searched to summarize clinical features of pediatric LS cases whose age at genetic diagnosis was not more than 18 years. RESULTS Genetic analysis identified a novel SCNN1G missense variant (c.1874C>T, p.Pro625Leu) in the proband with LS in childhood. In silico analysis revealed this heterozygous variant was highly conserved and deleterious. A total of 38 publications described pediatric LS associated with 25 pathogenic variants in SCNN1B and SCNN1G in 54 children. Despite the phenotypic heterogeneity, early-onset hypertension is the most common feature. All LS patients in this family or the reviewed cases showed significantly improvements in hypertension and hypokalemia after treatment with ENaC inhibitors. CONCLUSIONS This study identified a novel SCNN1G missense variant in a patient with pediatric LS, expanding the genetic spectrum of SCNN1G and demonstrating the PY motif of γ-ENaC as a potential mutant region. Early identification and specific management of LS in children and adolescents are important to prevent the development of hypertensive end-organ disease.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Cheng Pan
- Department of Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Di Zhang
- Department of Emergency and Critical Care, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Emergency and Critical Care, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Ping Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Enslow BT, Stockand JD, Berman JM. Liddle's syndrome mechanisms, diagnosis and management. Integr Blood Press Control 2019; 12:13-22. [PMID: 31564964 PMCID: PMC6731958 DOI: 10.2147/ibpc.s188869] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Liddle's syndrome is a genetic disorder characterized by hypertension with hypokalemic metabolic alkalosis, hyporeninemia and suppressed aldosterone secretion that often appears early in life. It results from inappropriately elevated sodium reabsorption in the distal nephron. Liddle's syndrome is caused by mutations to subunits of the Epithelial Sodium Channel (ENaC). Among other mechanisms, such mutations typically prevent ubiquitination of these subunits, slowing the rate at which they are internalized from the membrane, resulting in an elevation of channel activity. A minority of Liddle's syndrome mutations, though, result in a complementary effect that also elevates activity by increasing the probability that ENaC channels within the membrane are open. Potassium-sparing diuretics such as amiloride and triamterene reduce ENaC activity, and in combination with a reduced sodium diet can restore normotension and electrolyte imbalance in Liddle's syndrome patients and animal models. Liddle's syndrome can be diagnosed clinically by phenotype and confirmed through genetic testing. This review examines the clinical features of Liddle's syndrome, the differential diagnosis of Liddle's syndrome and differentiation from other genetic diseases with similar phenotype, and what is currently known about the population-level prevalence of Liddle's syndrome. This review gives special focus to the molecular mechanisms of Liddle's syndrome.
Collapse
Affiliation(s)
| | | | - Jonathan M Berman
- New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
11
|
Fan P, Lu CX, Yang KQ, Lu PP, Hao SF, Luo F, Zhang HM, Song L, Wu HY, Cai J, Zhang X, Zhou XL. Truncated Epithelial Sodium Channel β Subunit Responsible for Liddle Syndrome in a Chinese Family. Kidney Blood Press Res 2019; 44:942-949. [DOI: 10.1159/000500919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Liddle syndrome (LS) is a rare autosomal dominant disease caused by mutations in genes coding for epithelial sodium channel (ENaC) subunits. The aim of this study was to identify the mutation responsible for the LS in an extended Chinese family. Methods: DNA samples from the proband with early-onset, treatment-resistant hypertension, and hypokalemia and 19 additional relatives were all sequenced for mutations in exon 13 of the β-ENaC and γ-ENaC genes, using amplification by polymerase chain reaction and direct DNA sequencing. Results: Genetic testing of exon 13 of SCNN1B revealed duplication of guanine into a string of 3 guanines located at codon 602. This frameshift mutation is predicted to generate a premature stop codon at position 607, resulting in truncated β-ENaC lacking the remaining 34 amino acids, including the crucial PY motif. Among a total of 9 participants with the identical mutation, different phenotypes were identified. Tailored treatment with amiloride was safe and effective in alleviating disease symptoms in LS. No mutation of SCNN1G was identified in any of the examined participants. Conclusions: We report here a family affected by LS harboring a frameshift mutation (c.1806dupG) with a premature stop codon deleting the PY motif of β-ENaC. Our study demonstrates that the earlier LS patients are diagnosed by genetic testing and treated with tailored medication, the greater the likelihood of preventing or minimizing complications in the vasculature and target organs.
Collapse
|
12
|
A de novo mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset hypertension. J Hypertens 2019; 37:1731-1733. [DOI: 10.1097/hjh.0000000000002138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Fan P, Zhao YM, Zhang D, Liao Y, Yang KQ, Tian T, Lou Y, Luo F, Ma WJ, Zhang HM, Song L, Cai J, Liu YX, Zhou XL. A Novel Frameshift Mutation of SCNN1G Causing Liddle Syndrome with Normokalemia. Am J Hypertens 2019; 32:752-758. [PMID: 30977777 PMCID: PMC6636789 DOI: 10.1093/ajh/hpz053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liddle syndrome (LS) is an autosomal dominant disorder caused by single-gene mutations of the epithelial sodium channel (ENaC). It is characterized by early-onset hypertension, spontaneous hypokalemia and low plasma renin and aldosterone concentrations. In this study, we reported an LS pedigree with normokalemia resulting from a novel SCNN1G frameshift mutation. METHODS Peripheral blood samples were collected from the proband and eight family members for DNA extraction. Next-generation sequencing and Sanger sequencing were performed to identify the SCNN1G mutation. Clinical examinations were used to comprehensively evaluate the phenotypes of two patients. RESULTS Genetic analysis identified a novel SCNN1G frameshift mutation, p.Arg586Valfs*598, in the proband with LS. This heterozygous frameshift mutation generated a premature stop codon and deleted the vital PY motif of ENaC. The same mutation was present in his elder brother with LS, and his mother without any LS symptoms. Biochemical examination showed normokalemia in the three mutation carriers. The mutation identified was not found in any other family members, 100 hypertensives, or 100 healthy controls. CONCLUSIONS Our study identified a novel SCNN1G frameshift mutation in a Chinese family with LS, expanding the genetic spectrum of SCNN1G. Genetic testing helped us identify LS with a pathogenic mutation when the genotypes and phenotype were not completely consistent because of the hypokalemia. This case emphasizes that once a proband is diagnosed with LS by genetic testing, family genetic sequencing is necessary for early diagnosis and intervention for other family members, to protect against severe cardiovascular complications.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Mo Zhao
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Di Zhang
- Department of Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liao
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Lou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Fan P, Lu CX, Zhang D, Yang KQ, Lu PP, Zhang Y, Meng X, Hao SF, Luo F, Liu YX, Zhang HM, Song L, Cai J, Zhang X, Zhou XL. Liddle syndrome misdiagnosed as primary aldosteronism resulting from a novel frameshift mutation of SCNN1B. Endocr Connect 2018; 7:1528-1534. [PMID: 30496127 PMCID: PMC6311463 DOI: 10.1530/ec-18-0484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
Liddle syndrome (LS), a monogenetic autosomal dominant disorder, is mainly characterized by early-onset hypertension and hypokalemia. Clinically, misdiagnosis or missing diagnosis is common, since clinical phenotypes of LS are variable and nonspecific. We report a family with misdiagnosis of primary aldosteronism (PA), but identify as LS with a pathogenic frameshift mutation of the epithelial sodium channel (ENaC) β subunit. DNA samples were collected from a 32-year-old proband and 31 other relatives in the same family. A designed panel including 41 genes associated with monogenic hypertension was screened using next-generation sequencing. The best candidate disease-causing variants were verified by Sanger sequencing. Genetic analysis of the proband revealed a novel frameshift mutation c.1838delC (p.Pro613Glnfs*675) in exon 13 of SCNN1B. This heterozygous mutation involved the deletion of a cytosine from a string of three consecutive cytosines located at codons 612 to 613 and resulted in deletion of the crucial PY motif and elongation of the β-ENaC protein. The identical mutation was also found in 12 affected family members. Amiloride was effective in alleviating LS for patients. There were no SCNN1A or SCNN1G mutations in this family. Our study emphasizes the importance of considering LS in the differential diagnosis of early-onset hypertension. The identification of a novel frameshift mutation of SCNN1B enriches the genetic spectrum of LS and has allowed treatment of this affected family to prevent severe complications.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao-Xia Lu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-Pei Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su-Fang Hao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence should be addressed to X Zhang or X-L Zhou: or
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence should be addressed to X Zhang or X-L Zhou: or
| |
Collapse
|
15
|
Abstract
Liddle syndrome is an inherited form of low-renin hypertension, transmitted with an autosomal dominant pattern. The molecular basis of Liddle syndrome resides in germline mutations of the SCNN1A, SCNN1B and SCNN1G genes, encoding the α, β, and γ-subunits of the epithelial Na+ channel (ENaC), respectively. To date, 31 different causative mutations have been reported in 72 families from four continents. The majority of the substitutions cause an increased expression of the channel at the distal nephron apical membrane, with subsequent enhanced renal sodium reabsorption. The most common clinical presentation of the disease is early onset hypertension, hypokalemia, metabolic alkalosis, suppressed plasma renin activity and low plasma aldosterone. Consequently, treatment of Liddle syndrome is based on the administration of ENaC blockers, amiloride and triamterene. Herein, we discuss the genetic basis, clinical presentation, diagnosis and treatment of Liddle syndrome. Finally, we report a new case in an Italian family, caused by a SCNN1B p.Pro618Leu substitution.
Collapse
|