1
|
Kobayashi Y, Yatsu K, Haruna A, Kawano R, Ozawa M, Haze T, Komiya S, Suzuki S, Ohki Y, Fujiwara A, Saka S, Hirawa N, Toya Y, Tamura K. ATP2B1 gene polymorphisms associated with resistant hypertension in the Japanese population. J Clin Hypertens (Greenwich) 2024; 26:355-362. [PMID: 38430457 PMCID: PMC11007809 DOI: 10.1111/jch.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Single-nucleotide polymorphisms (SNP) of ATP2B1 gene are associated with essential hypertension but their association with resistant hypertension (RHT) remains unexplored. The authors examined the relationship between ATP2B1 SNPs and RHT by genotyping 12 SNPs in ATP2B1 gene of 1124 Japanese individuals with lifestyle-related diseases. Patients with RHT had inadequate blood pressure (BP) control using three antihypertensive drugs or used ≥4 antihypertensive drugs. Patients with controlled hypertension had BP controlled using ≤3 antihypertensive drugs. The association between each SNP and RHT was analyzed by logistic regression. The final cohort had 888 (79.0%) and 43 (3.8%) patients with controlled hypertension and RHT, respectively. Compared with patients homozygous for the minor allele of each SNP in ATP2B1, a significantly higher number of patients carrying the major allele at 10 SNPs exhibited RHT (most significant at rs1401982: 5.8% vs. 0.8%, p = .014; least significant at rs11105378: 5.7% vs. 0.9%, p = .035; most nonsignificant at rs12817819: 5.1% vs. 10%, p = .413). After multivariate adjustment for age, sex, systolic BP, and other confounders, the association remained significant for rs2681472 and rs1401982 (OR: 7.60, p < .05 and OR: 7.62, p = .049, respectively). Additionally, rs2681472 and rs1401982 were in linkage disequilibrium with rs11105378. This study identified two ATP2B1 SNPs associated with RHT in the Japanese population. rs1401982 was most closely associated with RHT, and major allele carriers of rs1401982 required significantly more antihypertensive medications. Analysis of ATP2B1 SNPs in patients with hypertension can help in early prediction of RHT and identification of high-risk patients who are more likely to require more antihypertensive medications.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Aiko Haruna
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Rina Kawano
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Tatsuya Haze
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Shiro Komiya
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Shota Suzuki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yuki Ohki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Akira Fujiwara
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Sanae Saka
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Nobuhito Hirawa
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
2
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|