1
|
Min Q, Hu W, Lei D, He X, Liu C, Li Q, Tian W. The correlation of shift work and CLOCK, BMAL1, and PER1 gene polymorphisms with hypertension in healthcare workers: A cross-sectional study. Medicine (Baltimore) 2024; 103:e40148. [PMID: 39809202 PMCID: PMC11596763 DOI: 10.1097/md.0000000000040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 01/03/2025] Open
Abstract
This study aimed to investigate the polymorphisms of circadian clock genes and the association of shift work and gene polymorphisms with hypertension in healthcare workers. This study recruited 222 healthcare workers, of whom 76 had primary hypertension (Hyp group) and 146 served as controls (Control group). General information and working hours were collected through questionnaires. Next, the identification of specific single nucleotide polymorphism (SNP) loci related to the Circadian locomotor output cycles kaput (CLOCK), brain and muscle arnt-like 1 (BMAL1), and PER1 genes was conducted by literature and PDGene database search. Venous blood samples were then collected for DNA extraction, and polymerase chain reaction-restriction fragment length polymorphism techniques were used to analyze the genotyping and allele frequency of the SNP sites. Finally, multivariate logistic regression was employed to analyze the association between various risk factors and hypertension in healthcare workers. Compared to the control group, the Hyp group had significantly higher proportions of alcohol consumption and family history of hypertension, while the average sleep duration and average exercise time were significantly lower. Shift work analysis showed that the Hyp group had a significantly lower average number of evening shifts per month while a much higher average number of night shifts per month compared to the control group. The GG genotype at the CLOCK rs1801260 locus was associated with a lower risk of hypertension (OR = 0.446), and the TT genotype of the BMAL1 rs11022775 locus also showed a similar protective effect (OR = 0.426). However, the genotype distribution of the PER1 rs2735611 locus was not significantly associated with the risk of hypertension. Multivariate regression analysis revealed that a family history of hypertension and insufficient sleep were significantly associated with the risk of hypertension, and the average number of night shifts per month was positively correlated with the risk of hypertension. Specific polymorphisms in the CLOCK and BMAL1 genes may have a protective effect against hypertension in healthcare workers, while polymorphisms in the PER1 gene are not significantly associated with the risk of hypertension. Additionally, a family history of hypertension, insufficient sleep, and shift work patterns may be significant risk factors for hypertension.
Collapse
Affiliation(s)
- Qiang Min
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wanglin Hu
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Dan Lei
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Xinhao He
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Chaoyi Liu
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Qing Li
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| | - Weihua Tian
- Department of Neurosurgery, Wuhan Hanyang Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Stevens H, Verdone G, Lang L, Graham C, Pilic L, Mavrommatis Y. A systematic review of variations in circadian rhythm genes and type 2 diabetes. Nutr Health 2024; 30:61-75. [PMID: 37282546 DOI: 10.1177/02601060231179777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Type 2 diabetes is a chronic disease that has severe individual and societal consequences, which is forecast to worsen in the future. A new field of investigation is variations in circadian rhythm genes, in conjunction with diet and sleep variables, associations with, and effects on, type 2 diabetes development. OBJECTIVE This systematic review aimed to analyse all current literature regarding circadian rhythm gene variations and type 2 diabetes, and explore their interplay with diet and sleep variables on type 2 diabetes outcomes. This review was registered with PROSPERO (CRD42021259682). METHODOLOGY Embase and Pubmed were searched on 6/8/2021/11/8/2021 for studies of all designs, including participants from both sexes, all ethnicities, ages, and geographic locations. Participants with risk alleles/genotypes were compared with the wildtype regarding type 2 diabetes outcomes. Studies risk of bias were scored according to the risk of bias in non-randomised studies - interventions/exposures criteria. RESULTS In total, 31 studies were found (association n = 29/intervention n = 2) including >600,000 participants from various ethnicities, sexes, and ages. Variations in the melatonin receptor 1B, brain and muscle arnt-like 1 and period circadian regulator (PER) genes were consistently associated with type 2 diabetes outcomes. CONCLUSIONS Individuals with variations in melatonin receptor 1B, brain and muscle arnt-like 1 and PER may be at higher risk of type 2 diabetes. Further research is needed regarding other circadian rhythm genes. More longitudinal studies and randomised trials are required before clinical recommendations can be made.
Collapse
Affiliation(s)
- Harry Stevens
- St Mary's University, Twickenham, London, UK
- Cereneo Foundation, Vitznau, Switzerland
| | | | - Leonie Lang
- St Mary's University, Twickenham, London, UK
| | - Catherine Graham
- Cereneo Foundation, Vitznau, Switzerland
- Oxford Brookes University, Oxford, UK
| | - Leta Pilic
- St Mary's University, Twickenham, London, UK
- Optimyse Nutrition LTD, London, UK
| | | |
Collapse
|
3
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
4
|
Yang YD, Zeng Y, Li J, Zhou JH, He QY, Zheng CJ, Reichetzeder C, Krämer BK, Hocher B. Association of BMAL1 clock gene polymorphisms with fasting glucose in children. Pediatr Res 2023:10.1038/s41390-023-02467-8. [PMID: 36732647 PMCID: PMC10382306 DOI: 10.1038/s41390-023-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 12/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The brain and muscle Arnt-like protein-1 (BMAL1) gene is an important circadian clock gene and previous studies have found that certain polymorphisms are associated with type 2 diabetes in adults. However, it remains unknown if such polymorphisms can affect fasting glucose in children and if other factors modify the associations. METHODS A school-based cross-sectional study with 947 Chinese children was conducted. A multivariable linear regression model was used to analyze the association between BMAL1 gene polymorphisms and fasting glucose level. RESULTS After adjusting for age, sex, body mass index (BMI), physical activity, and unhealthy diet, GG genotype carriers of BMAL1 rs3789327 had higher fasting glucose than AA/GA genotype carriers (b = 0.101, SE = 0.050, P = 0.045). Adjusting for the same confounders, rs3816358 was shown to be significantly associated with fasting glucose (b = 0.060, SE = 0.028, P = 0.032). Furthermore, a significant interaction between rs3789327 and nutritional status on fasting glucose was identified (Pinteraction = 0.009); rs3789327 was associated with fasting glucose in the overweight/obese subgroup (b = 0.353, SE = 0.126, P = 0.006), but not in non-overweight/non-obese children. CONCLUSIONS BMAL1 polymorphisms were significantly associated with the fasting glucose level in children. Additionally, the observed interaction between nutritional status and BMAL1 supports promoting an optimal BMI in children genetically predisposed to higher glucose level. IMPACT Polymorphisms in the essential circadian clock gene BMAL1 were associated with fasting blood glucose levels in children. Additionally, there was a significant interaction between nutritional status and BMAL1 affecting fasting glucose levels. BMAL1 rs3789327 was associated with fasting glucose only in overweight/obese children. This finding could bring novel insights into mechanisms by which nutritional status influences fasting glucose in children.
Collapse
Affiliation(s)
- Yi-De Yang
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Yuan Zeng
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Jian Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China
| | - Jun-Hua Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Quan-Yuan He
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Chan-Juan Zheng
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, 410006, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.,HMU - Health and Medical University, Potsdam, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China. .,Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China. .,Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Škrlec I, Talapko J, Džijan S, Cesar V, Lazić N, Lepeduš H. The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 11:20. [PMID: 35053018 PMCID: PMC8773381 DOI: 10.3390/biology11010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is a combination of cardiovascular risk factors associated with type 2 diabetes, obesity, and cardiovascular diseases. The circadian clock gene polymorphisms are very likely to participate in metabolic syndrome genesis and development. However, research findings of the association between circadian rhythm gene polymorphisms and MetS and its comorbidities are not consistent. In this study, a review of the association of circadian clock gene polymorphisms with overall MetS risk was performed. In addition, a meta-analysis was performed to clarify the association between circadian clock gene polymorphisms and MetS susceptibility based on available data. The PubMed and Scopus databases were searched for studies reporting the association between circadian rhythm gene polymorphisms (ARNTL, BMAL1, CLOCK, CRY, PER, NPAS2, REV-ERBα, REV-ERBβ, and RORα) and MetS, and its comorbidities diabetes, obesity, and hypertension. Thirteen independent studies were analyzed with 17,381 subjects in total. The results revealed that the BMAL1 rs7950226 polymorphism was associated with an increased risk of MetS in the overall population. In contrast, the CLOCK rs1801260 and rs6850524 polymorphisms were not associated with MetS. This study suggests that some circadian rhythm gene polymorphisms might be associated with MetS in different populations and potentially used as predictive biomarkers for MetS.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Snježana Džijan
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Genos Ltd., DNA Laboratory, 10000 Zagreb, Croatia
| | - Vera Cesar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Nikolina Lazić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Hrvoje Lepeduš
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Faculty of Humanities and Social Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
6
|
Fang Z, Zhu L, Jin Y, Chen Y, Chang W, Yao Y. Downregulation of Arntl mRNA Expression in Women with Hypertension: A Case-Control Study. Kidney Blood Press Res 2021; 46:741-748. [PMID: 34515147 PMCID: PMC8743905 DOI: 10.1159/000518669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous studies have reported that disturbance of endogenous circadian rhythms enhances the chance of hypertension and suggested that circadian clock genes could have a crucial function in the onset of the disease. This case-control study was aimed to investigate the association of the mRNA expression of aryl hydrocarbon receptor nuclear translocator like (Arntl), clock circadian regulator (Clock), and period circadian regulators 1 and 2 (Per1 and Per2) with hypertension and blood pressure levels. METHODS A total of 172 subjects were recruited in this study, including 86 hypertension and 86 nonhypertension controls. The mRNA expression levels in peripheral blood mononuclear cells were determined by real-time quantitative polymerase chain reaction. The differences in Arntl, Clock, Per1, and Per2 mRNA expression were compared between the 2 groups, and the relationship between mRNA expression and cardiometabolic risk profiles was also assessed. RESULTS We found that the mRNA expression of Arntl was downregulated in the hypertension cases compared with controls in women (1.10 [0.66, 1.71] vs. 1.30 [0.99, 2.06], p = 0.031). There was a significant negative correlation between the Arntl mRNA expression and SBP (r = -0.301, p = 0.004) and DBP (r = -0.222, p = 0.034) in women. In men, a negative correlation between the Per1 mRNA expression and SBP (r = -0.247, p = 0.026) was found. CONCLUSIONS The Arntl mRNA expression may play an important role in progression of hypertension in women.
Collapse
Affiliation(s)
- Zhengmei Fang
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
| | - Lijun Zhu
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
| | - Yuelong Jin
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
| | - Yan Chen
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
| | - Weiwei Chang
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
| | - Yingshui Yao
- Department of Epidemiology, School of Public Health, and Institute of Chronic Disease Prevention and Control, Wannan Medical College, Wuhu, China
- Anhui College of Traditional Chinese Medicine, Wuhu, China
| |
Collapse
|
7
|
The Association of Cardiovascular Disease with the T3111C Polymorphism in the CLOCK Gene. MEDICAL SCIENCES FORUM 2021. [DOI: 10.3390/iecmd2021-10314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Cardiovascular diseases (CVDs) are among the leading causes of death worldwide, although CVD mortality has decreased in developed countries. Numerous pathophysiological processes lead to the development of CVDs. The circadian rhythm coordinates many physiological processes, and its disruption can lead to many pathophysiological changes. One of the significant circadian rhythm genes is the CLOCK gene, whose polymorphisms are associated with CVD risk factors. Research findings of the association between CLOCK gene polymorphism and CVDs and its comorbidities are not consistent. This meta-analysis was conducted to quantify the associations between T3111C polymorphism and the risk of CVDs. Materials and Methods: The PubMed and Scopus databases were searched for studies reporting onthe association between T3111C (rs1801260) in the circadian CLOCK gene and cardiovascular disease and its comorbidities such as obesity, hypertension, insulin resistance, and coronary artery disease. A fixed-effect model was used to calculate the pooled odds ratio and 95% confidence interval by comprehensive meta-analysis software. Results: Five independent studies, including case-control, cross-sectional, and cohort research methods, were analyzed with 3123 subjects in total. The meta-analysis revealed a significant association between T3111C polymorphism and cardiovascular disease (OR = 1.32, 95% CI: 1.16–1.50, p < 0.001) with significant heterogeneity (I2 = 91.1%, p < 0.001) and no publication bias. The subgroup analysis on comorbidity related to CVDs revealed that hypertension was associated with T3111C polymorphism (OR = 2.02, 95% CI: 1.60–2.54, p < 0.001). Conclusions: Our meta-analysis based on available studies using a fixed model shows that T3111C polymorphism in the CLOCK gene is associated with CVD susceptibility.
Collapse
|
8
|
Fischer C. A patent review of apelin receptor (APJR) modulators (2014-2019). Expert Opin Ther Pat 2020; 30:251-261. [DOI: 10.1080/13543776.2020.1731473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|