1
|
Kamiya T. Role of copper and SOD3-mediated extracellular redox regulation in tumor progression. J Clin Biochem Nutr 2024; 75:1-6. [PMID: 39070539 PMCID: PMC11273271 DOI: 10.3164/jcbn.24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 07/30/2024] Open
Abstract
Copper (Cu), an essential micronutrient, participates in several physiological processes, including cell proliferation and development. Notably, the disturbance of Cu homeostasis promotes tumor progression through the generation of oxidative stress. Chronic or excessive accumulation of reactive oxygen species (ROS) causes lipid peroxidation, protein denaturation, and enzyme inactivation, which leads to a breakdown of intracellular homeostasis and exacerbates tumor progression. The disruption of the ROS scavenging mechanism also reduces resistance to oxidative stress, leading to further deterioration in a disease state, and maintenance of redox homeostasis is thought to inhibit the onset and progression of various diseases. Superoxide dismutase 3 (SOD3), a Cu-containing secretory antioxidative enzyme, plays a key role in extracellular redox regulation, and the significant reduction in SOD3 facilitates tumor progression. Furthermore, the significant induction of SOD3 participates in tumor metastasis. This review focuses on the role of Cu homeostasis and antioxidative enzymes, including SOD3, in tumor progression, to help clarify the role of redox regulation.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
2
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
3
|
Kamiya T, Yamaguchi Y, Oka M, Hara H. Combined action of FOXO1 and superoxide dismutase 3 promotes MDA-MB-231 cell migration. Free Radic Res 2022; 56:106-114. [PMID: 35271779 DOI: 10.1080/10715762.2022.2049770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Superoxide dismutase 3 (SOD3), one of SOD isozymes, maintains extracellular redox homeostasis through the dismutation reaction of superoxide. Loss of SOD3 in tumor cells induces oxidative stress and exacerbates tumor progression; however, interestingly, overexpression of SOD3 also promotes cell proliferation through the production of hydrogen peroxide. In this study, we investigated the functional role of SOD3 in human breast cancer MDA-MB-231 cell migration and the molecular mechanisms involved in high expression of SOD3 in MDA-MB-231 cells and human monocytic THP-1 cells. The level of histone H3 trimethylation at lysine 27 (H3K27me3), a marker of gene silencing, was decreased in 12-O-tetra-decanoylphorbol-13-acetate (TPA)-treated THP-1 cells. Also, that reduction was observed within the SOD3 promoter region. We then investigated the involvement of H3K27 demethylase JMJD3 in SOD3 induction. The induction of SOD3 and the reduction of H3K27me3 were inhibited in the presence of JMJD3 inhibitor, GSK-J4. Additionally, it was first determined that the knockdown of the transcription factor forkhead box O1 (FOXO1) significantly suppressed TPA-elicited SOD3 induction. FOXO1-mediated SOD3 downregulation was also observed in MDA-MB-231 cells, and knockdown of FOXO1 and SOD3 suppressed cell migration. Our results provide a novel insight into epigenetic regulation of SOD3 expression in tumor-associated cells, and high expression of FOXO1 and SOD3 would participate in the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuji Yamaguchi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Oka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
4
|
Kamiya T. Copper in the tumor microenvironment and tumor metastasis. J Clin Biochem Nutr 2022; 71:22-28. [PMID: 35903604 PMCID: PMC9309082 DOI: 10.3164/jcbn.22-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
Copper (Cu), an essential micronutrient, plays an essential role in several physiological processes, including cell proliferation and angiogenesis; however, its dysregulation induces oxidative stress and inflammatory responses. Significant Cu accumulation is observed in several tumor tissues. The bioavailability of intracellular Cu is tightly controlled by Cu transporters, including Cu transporter 1 (CTR1) and Cu-transporting P-type ATPase α and β (ATP7A and ATP7B), and Cu chaperones, including Cu chaperone for superoxide dismutase 1 (CCS) and antioxidant-1 (Atox-1). In several tumor tissues, these abnormalities that induce intracellular Cu accumulation are involved in tumor progression. In addition, functional disturbance in Cu-containing secretory enzymes, such as superoxide dismutase 3 (SOD3), and lysyl oxidase enzymes (LOX and LOXL1–4) with abnormal Cu dynamics plays a key role in tumor metastasis. For example, the loss of SOD3 in tumor tissues induces oxidative stress, which promotes neovascularization and epithelial-to-mesenchymal transition (EMT). LOX promotes collagen crosslinking, which functions in the metastatic niche formation. Accordingly, restricted Cu regulation may be a novel strategy for the inhibition of tumor metastasis. However, it is unclear how these Cu disturbances occur in tumor tissues and the exact molecular mechanisms underlying Cu secretory enzymes. In this review article, I discuss the role of Cu transporters, Cu chaperones, and Cu-containing secretory enzymes in tumor progression to better understand the role of Cu homeostasis in tumor tissues.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University
| |
Collapse
|
5
|
Takemoto R, Kamiya T, Atobe T, Hara H, Adachi T. Regulation of lysyl oxidase expression in THP-1 cell-derived M2-like macrophages. J Cell Biochem 2021; 122:777-786. [PMID: 33644883 DOI: 10.1002/jcb.29911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
Lysyl oxidase (LOX) is a copper-containing enzyme and its overexpression in tumor tissues promote tumor metastasis through the crosslinking of extracellular matrix. Our previous report demonstrated that LOX expression is significantly increased in human leukemic THP-1 cell-derived M2-like macrophages, and histone modification plays a key role in its induction. However, the rigorous mechanism of LOX regulation remains unclear. In this study, we investigated the role of functional transcription factors, hypoxia-inducible factor 1α (HIF1α), signal transducer and activator of transcription 3 (STAT3) and forkhead box O1 (FOXO1) in LOX regulation in M2-like macrophages. HIF1α expression was significantly increased in M2-like macrophages, and HIF1α inhibitor, TX402, suppressed LOX induction. The significant STAT3 activation was also observed in M2-like macrophages. Additionally, LOX induction was canceled in the presence of STAT3 inhibitor, S3I-201, suggesting that HIF1α and STAT3 pathways play a critical role in LOX induction. On the other hand, our ChIP results clearly indicated that the enrichment of FOXO1 within the lox promoter region was dramatically decreased in M2-like macrophages. In this context, knockdown of FOXO1 further enhanced LOX induction. LOX induction and HIF1α binding to the lox promoter region were suppressed in FOXO1-overexpressed cells, suggesting that the FOXO1 binding to the lox promoter region counteracted HIF1α binding to that region. Overall, the present data suggested that both of HIF1α and STAT3 were required for LOX induction in M2-like macrophages, and loss of FOXO1 within the lox promoter region facilitated HIF1α binding to that region which promoted LOX induction.
Collapse
Affiliation(s)
- Ryuhei Takemoto
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Taku Atobe
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
6
|
Lin X, Dinglin X, Cao S, Zheng S, Wu C, Chen W, Li Q, Hu Q, Zheng F, Wu Z, Lin DC, Yao Y, Xu X, Xie Z, Liu Q, Yao H, Hu H. Enhancer-Driven lncRNA BDNF-AS Induces Endocrine Resistance and Malignant Progression of Breast Cancer through the RNH1/TRIM21/mTOR Cascade. Cell Rep 2020; 31:107753. [PMID: 32521278 DOI: 10.1016/j.celrep.2020.107753] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenomic alterations can give rise to various tumor-promoting properties, including therapeutic resistance of cancer cells. Here, we identify an lncRNA, BDNF-AS, whose overexpression is specifically driven by a MEF2A-regulated enhancer in endocrine-resistant and triple-negative breast cancer (TNBC). High levels of BDNF-AS in breast cancer tissues not only feature endocrine resistance in hormone receptor (HR)-positive patients but also correlate with poor outcomes in both HR-positive and TNBC patients. Mechanistically, BDNF-AS acts as a molecular scaffold to promote RNH1 protein degradation via TRIM21-mediated ubiquitination of RNH1 at K225. Subsequently, BDNF-AS abolishes RNH1-regulated and RISC-mediated mTOR mRNA decay, therefore sustaining the activation of mTOR signaling. Importantly, mTOR inhibitor, but not PI3K inhibitor, could reverse tamoxifen resistance induced by the overexpression of BDNF-AS. These results point toward a master regulatory role of an enhancer-activated cascade of BDNF-AS/RNH1/TRIM21/mTOR in endocrine resistance and malignant progression of breast cancer.
Collapse
Affiliation(s)
- Xiaorong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Diagnosis and Treatment Center of Breast Diseases, Shantou Affiliated Hospital, Sun Yat-sen University, Shantou 515031, People's Republic of China
| | - Xiaoxiao Dinglin
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Siting Cao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, People's Republic of China
| | - Senyou Zheng
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510663, People's Republic of China
| | - Wenying Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Qingjian Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Qian Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Zhiyong Wu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Affiliated Hospital, Sun Yat-sen University, Shantou 515031, People's Republic of China
| | - De-Chen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510663, People's Republic of China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China.
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China.
| |
Collapse
|
7
|
Takemoto R, Kamiya T, Hara H, Adachi T. Lysyl oxidase expression is regulated by the H3K27 demethylase Jmjd3 in tumor-associated M2-like macrophages. J Clin Biochem Nutr 2020; 66:110-115. [PMID: 32231406 DOI: 10.3164/jcbn.19-67] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
Copper is one of the essential micronutrients, and copper-containing enzymes contribute to crucial functions in the body. Lysyl oxidase is a copper-containing enzyme that remodels the extracellular matrix by cross-linking collagen and elastin. The overexpression of lysyl oxidase was recently shown to promote tumor metastasis. M2-like macrophages were also found to significantly accumulate in the tumor microenvironment, and correlated with a poor patient's outcome. We speculate that M2-like macrophages promote tumor progression via lysyl oxidase expression. Epigenetics, a mitotically heritable change in gene expression without any change in DNA sequencing, is also associated with tumor progression. However, the relationship between lysyl oxidase expression in M2-like macrophages and epigenetics remains unclear. Lysyl oxidase expression was significantly induced in human leukemic THP-1 cell-derived M2-like macrophages. Furthermore, the level of histone H3 tri-methylation at lysine 27 was decreased, and a pre-treatment with a H3K27 demethylase inhibitor notably suppressed lysyl oxidase expression in M2-like macrophages. Lysyl oxidase derived from M2-like macrophages also enhanced breast cancer cell migration, and this was suppressed by a H3K27 demethylase inhibitor. The present results suggest the mechanism of lysyl oxidase expression in M2-like macrophages as an aspect of epigenetics, particularly histone methylation.
Collapse
Affiliation(s)
- Ryuhei Takemoto
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
8
|
Kamiya T, Tanaka M, Hara H, Yamaguchi E, Itoh A, Adachi T. Inhibitory effects of 4-hydroperoxy-2-decenoic acid ethyl ester on phorbol ester- and TGF-β1-induced MMPs expression. Free Radic Res 2019; 53:1051-1059. [PMID: 31575304 DOI: 10.1080/10715762.2019.1675874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs), zinc-containing proteinases, play a critical role in tumour progression by degrading extracellular matrix components. MMP2 and MMP9 are secreted from tumour-associated macrophages as well as tumour cells and have been implicated in the formation of the tumour microenvironment. Therefore, the inhibition of these MMPs may suppress tumour progression and metastasis. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE) is known to cause apoptosis in the human lung cancer cell line A549 by inducing endoplasmic reticulum (ER) stress. However, the effects of HPO-DAEE on tumour progression remain unclear. HPO-DAEE pre-treatment significantly suppressed phorbol 12-myristate 13-acetate (TPA)-triggered MMP activation in human monocytic THP-1 cells. It also enhanced the expression of haem oxygenase-1, an antioxidant enzyme, and suppressed the TPA-triggered intracellular accumulation of reactive oxygen species (ROS). Furthermore, HPO-DAEE suppressed transforming growth factor-β1-triggered human prostate cancer PC3 cell migration and this was accompanied by the inhibition of MMP expression and activities. The present results indicate that HPO-DAEE may exert inhibitory effects on tumour progression by suppressing MMP expression and activities.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Miho Tanaka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
9
|
Kamiya T. [Regulation of Extracellular Redox Homeostasis in Tumor Microenvironment]. YAKUGAKU ZASSHI 2019; 139:1139-1144. [PMID: 31474628 DOI: 10.1248/yakushi.19-00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive generation of reactive oxygen species (ROS) has been implicated in the progression of tumors. Superoxide dismutase 3 (SOD3) is a copper-containing secretory antioxidative enzyme that plays a critical role in redox homeostasis, particularly in extracellular spaces. Considerable evidence suggests that SOD3 protein expression is significantly decreased or lost in several tumor tissues, and this loss results in tumor metastasis. On the other hand, epigenetic disturbances, including DNA hyper-/hypomethylation, histone de/acetylation, and histone de/methylation, may be involved in tumorigenesis and the progression of metastasis. However, regulation of SOD3 in the tumor microenvironment and the involvement of epigenetics in its expression remain unclear. To elucidate the molecular mechanisms underlying SOD3 expression, we investigated the involvement of epigenetics, including DNA methylation and histone modifications, in its regulation in tumor cells and macrophages. SOD3 expression in human monocytic THP-1 cells and human lung cancer A549 cells was silenced by DNA hypermethylation within the SOD3 promoter region. Furthermore, the DNA demethylase, ten-eleven translocation 1, was shown for the first time to play a key role in regulation of DNA methylation within that region. We also demonstrated that myocyte enhancer factor 2 functioned as one of the transcription factors of SOD3 expression in THP-1 cells. Collectively, these novel results will contribute to the elucidation of epigenetic redox regulation, and may provide important insights into tumorigenesis and tumor metastasis.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University
| |
Collapse
|
10
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|