1
|
Peng Y, Zheng X, Zhang S, Luo Z, Song L, Chen H, Yao X. Advances in the activity of resveratrol and its derivatives in cardiovascular diseases. Arch Pharm (Weinheim) 2025; 358:e2400865. [PMID: 39956927 DOI: 10.1002/ardp.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases (CVDs), the leading cause of human death worldwide, are diseases that affect the heart and blood vessels and include arrhythmias, coronary atherosclerotic heart disease, hypertension, and so on. Resveratrol (RSV) is a natural nonflavonoid phenolic compound with antioxidant, anti-inflammatory, anticancer, and cardiovascular protection functions. RSV has shown significant protective effects against CVD. However, RSV's clinical application is limited by its tendency to be oxidized and metabolized easily. Therefore, it is necessary to optimize the RSV structure. This review will introduce the activity, synthesis, and structure-activity relationships of RSV derivatives, and the mechanism of the action of RSV in CVDs in recent years.
Collapse
Affiliation(s)
- Yaling Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, Shaoyang, Hunan, China
| | - Li Song
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
3
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
4
|
Fujii K, Fujiwara-Tani R, Nukaga S, Ohmori H, Luo Y, Nishida R, Sasaki T, Miyagawa Y, Nakashima C, Kawahara I, Ogata R, Ikemoto A, Sasaki R, Kuniyasu H. Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene. Int J Mol Sci 2024; 25:3015. [PMID: 38474261 DOI: 10.3390/ijms25053015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
5
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
6
|
Khan SU, Khan SU, Suleman M, Khan MU, Khan MS, Arbi FM, Hussain T, Mohammed Alsuhaibani A, S Refat M. Natural Allies for Heart Health: Nrf2 Activation and Cardiovascular Disease Management. Curr Probl Cardiol 2024; 49:102084. [PMID: 37714318 DOI: 10.1016/j.cpcardiol.2023.102084] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
The term "cardiovascular diseases" (CVD) refers to various ailments that affect the heart and blood vessels, including myocardial ischemia, congenital heart defects, heart failure, rheumatic heart disease, hypertension, peripheral artery disease, atherosclerosis, and cardiomyopathies. Despite significant breakthroughs in preventative measures and treatment choices, CVDs significantly contribute to morbidity and mortality, imposing a considerable financial burden. Oxidative stress (OS) is a fundamental contributor to the development and progression of CVDs, resulting from an inherent disparity in generating reactive oxygen species. The disparity above significantly contributes to the aberrant operation of the cardiovascular system. To tackle this issue, therapeutic intervention primarily emphasizes the nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor crucial in regulating endogenous antioxidant defense systems against OS. The Nrf2 exhibits potential as a promising target for effectively managing CVDs. Significantly, an emerging field of study is around the utilization of natural substances to stimulate the activation of Nrf2, hence facilitating the promotion of cardioprotection. This technique introduces a new pathway for treating CVD. The substances above elicit their advantageous effects by mitigating the impact of OS via initiating Nrf2 signaling. The primary objective of our study is to provide significant insights that can contribute to advancing treatment methods, including natural products. These strategies aim to tackle the obstacles associated with CVDs.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and South west University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan; Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | | | | | - Talib Hussain
- Women Dental College Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
8
|
Zhang ZH, Peng JY, Chen YB, Wang C, Chen C, Song GL. Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2023; 12:antiox12030702. [PMID: 36978950 PMCID: PMC10045564 DOI: 10.3390/antiox12030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
9
|
de Castro AL, Fernandes RO, Ortiz VD, Campos C, Bonetto JHP, Fernandes TRG, Conzatti A, Siqueira R, Tavares AV, Belló-Klein A, Araujo ASDR. Cardioprotective doses of thyroid hormones improve NO bioavailability in erythrocytes and increase HIF-1α expression in the heart of infarcted rats. Arch Physiol Biochem 2022; 128:1516-1523. [PMID: 32551929 DOI: 10.1080/13813455.2020.1779752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Infarction leads to a decrease in NO bioavailability in the erythrocytes. Thyroid hormones (TH) present positive effects after infarction. However, there are no studies evaluating the effects of cardioprotective doses of TH in the erythrocytes after infarction. OBJECTIVE This study aimed to evaluate the effects of TH in NO bioavailability and oxidative stress parameters in the erythrocytes of infarcted rats. MATERIAL AND METHODS Wistar rats were allocated into the three groups: Sham-operated (SHAM), infarcted (AMI) and infarcted + TH (AMIT). AMIT rats received T4 and T3 for 12 days by gavage. Subsequently, the animals were evaluated by echocardiography and the LV and erythrocytes were collected. RESULTS TH improved NO bioavailability and increased catalase activity in the erythrocytes. Besides that, TH increased HIF-1α in the heart. CONCLUSION TH seems to be positive for erythrocytes preventing a decrease in NO bioavailability and increasing antioxidant enzymatic defense after infarction.
Collapse
Affiliation(s)
- Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Oliveira Fernandes
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa D Ortiz
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Campos
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica H P Bonetto
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tânia Regina G Fernandes
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Conzatti
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Siqueira
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela Vicente Tavares
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Pterostilbene Attenuates Subarachnoid Hemorrhage-Induced Brain Injury through the SIRT1-Dependent Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3550204. [PMID: 36506933 PMCID: PMC9729048 DOI: 10.1155/2022/3550204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Neuroinflammatory injury, oxidative insults, and neuronal apoptosis are major causes of poor outcomes after subarachnoid hemorrhage (SAH). Pterostilbene (PTE), an analog of resveratrol, has been verified as a potent sirtuin 1 (SIRT1) activator. However, the beneficial actions of PTE on SAH-induced brain injury and whether PTE regulates SIRT1 signaling after SAH remain unknown. We first evaluated the dose-response influence of PTE on early brain impairment after SAH. In addition, EX527 was administered to suppress SIRT1 signaling. The results revealed that PTE significantly attenuated microglia activation, oxidative insults, neuronal damage, and early neurological deterioration. Mechanistically, PTE effectively enhanced SIRT1 expression and promoted nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation in nuclei. Furthermore, EX527 pretreatment distinctly repressed PTE-induced SIRT1 and Nrf2 activation and deteriorated these beneficial outcomes. In all, our study provides the evidence that PTE protects against SAH insults by activating SIRT1-dependent Nrf2 signaling pathway. PTE might be a therapeutic alternative for SAH.
Collapse
|
11
|
Heikal LA, El-Kamel AH, Mehanna RA, Khalifa HM, Hassaan PS. Improved oral nutraceutical-based intervention for the management of obesity: pterostilbene-loaded chitosan nanoparticles. Nanomedicine (Lond) 2022; 17:1055-1075. [PMID: 36066036 DOI: 10.2217/nnm-2022-0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl β-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPβCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPβCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPβCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Centre of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Khalifa
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Tasca S, Campos C, Lacerda D, Ortiz VD, Turck P, Bianchi SE, Castro ALD, Belló-Klein A, Bassani V, Araújo ASDR. Pterostilbeno Reduz o Estresse Oxidativo no Pulmão e no Ventrículo Direito Induzido por Infarto do Miocárdio Experimental. Arq Bras Cardiol 2022; 118:435-445. [PMID: 35262578 PMCID: PMC8856678 DOI: 10.36660/abc.20201155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fundamento O pterostilbeno (PS), um composto polifenólico natural e antioxidante, surge como uma intervenção promissora para minimizar danos do infarto agudo do miocárdio (IAM). Objetivo Este estudo teve como objetivo avaliar o desempenho do PS na promoção da homeostase redox nos pulmões e no ventrículo direito (VD) de animais infartados. Métodos Ratos Wistar machos (60 dias de idade) foram randomizados em três grupos: SHAM, IAM (infarto) e IAM+PS (IAM + pterostilbeno). Sete dias após o procedimento de IAM, os ratos foram tratados com PS (100 mg/kg/dia) por gavagem por oito dias. Os animais foram depois sacrificados e os pulmões e VD foram coletados para análise do balanço redox (diferenças foram consideradas significativas quando p<0,05). Resultados Nossos resultados mostram que o IAM desencadeia a interrupção redox no VD e nos pulmões, o que pode contribuir para danos induzido pelo IAM nesses órgãos. Consistentemente, o PS mitigou o estresse oxidativo e restaurou as defesas antioxidantes (Glutationa – GSH nos pulmões: SHAM = 0,79 ± 0,07; IAM = 0,67 ± 0,05; IAM + PS = 0,86 ± 0,14; p<0,05), indicando seu papel protetor neste cenário. Conclusão Nosso trabalho evidencia o potencial do uso de PS como abordagem terapêutica adjuvante após IAM para proteção dos tecidos pulmonares e cardíacos direitos.
Collapse
|
13
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol Adv 2021; 53:107844. [PMID: 34626788 DOI: 10.1016/j.biotechadv.2021.107844] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Most drugs or the natural substances reputed to display some biological activity are hydrophobic molecules that demonstrate low bioavailability regardless of their mode of absorption. Resveratrol and its derivatives belong to the chemical group of stilbenes; while stilbenes are known to possess very interesting properties, these are limited by their poor aqueous solubility as well as low bioavailability in animals and humans. Among the substances capable of forming nanomolecular inclusion complexes which can be used for drug delivery, cyclodextrins show spectacular physicochemical and biomedical implications in stilbene chemistry for their possible application in nanomedicine. By virtue of their properties, cyclodextrins have also demonstrated their possible use in green chemistry for the synthesis of stilbene glucosylated derivatives with potential applications in dermatology and cosmetics. Compared to chemical synthesis and genetically modified microorganisms, plant cell or tissue systems provide excellent models for obtaining stilbenes in few g/L quantities, making feasible the production of these compounds at a large scale. However, the biosynthesis of stilbenes is only possible in the presence of the so-called elicitor compounds, the most commonly used of which are cyclodextrins. We also report here on the induction of resveratrol production by cyclodextrins or combinatory elicitation with methyljasmonate in plant cell systems as well as the mechanisms by which they are able to trigger a stilbene response. The present article therefore discusses the role of cyclodextrins in stilbene chemistry both at the physico-chemical level as well as the biomedical and biotechnological levels, emphasizing the notion of "easy alliance" between these compounds and stilbenes.
Collapse
|
15
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Wang A J, Zhang J, Xiao M, Wang S, Wang B J, Guo Y, Tang Y, Gu J. Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways. Cell Mol Life Sci 2021; 78:3105-3125. [PMID: 33438055 PMCID: PMC11072696 DOI: 10.1007/s00018-020-03729-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.
Collapse
Affiliation(s)
- Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110016, Liaoning, China
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
de Morais JMB, Cruz EMS, da Rosa CVD, Cesário RC, Comar JF, Moreira CCL, de Almeida Chuffa LG, Seiva FRF. Pterostilbene influences glycemia and lipidemia and enhances antioxidant status in the liver of rats that consumed sucrose solution. Life Sci 2021; 269:119048. [PMID: 33453246 DOI: 10.1016/j.lfs.2021.119048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
AIMS The present study investigated the potential effects of pterostilbene (PT) on glycemic and lipid profiles, fat storage, cardiovascular indices, and hepatic parameters of rats fed with sucrose solution. MAIN METHODS 24 male Wistar rats received either drinking water or a 40% sucrose solution over a period of 140 days. After this period, animals were randomly allocated into four groups (n = 6): Control (C), C + Pterostilbene (PT), Sucrose (S), and S + PT. Pterostilbene (40 mg/kg) was given orally for 45 consecutive days. KEY FINDINGS Pterostilbene did not influence morphometric and nutritional parameters. The insulin sensitivity index TyG was elevated in the C + PT group (p < 0.01) and reduced in S + PT group (p < 0.05). Basal glucose levels were lower in the S + PT group (p < 0.05), and the glycemic response was improved with PT treatment in glucose provocative tests. Conversely, rats from the C + PT group showed impaired glucose disposal during those tests. Lipid profile was partially improved by PT treatment. Hepatic oxidative stress in the S group was improved after PT treatment. In the C group, PT reduced SOD activity, glutathione levels, and increased catalase activity. Collagen content was reduced by PT treatment. SIGNIFICANCE PT effects depends on the type of diet the animals were submitted. In rats fed with sucrose-solution, PT confirmed its positive effects, improving glucose and lipid profile, and acting as a potent antioxidant. The effects of PT on rats that consumed a normal diet were very discrete or even undesirable. We suggest caution with indiscriminate consume of natural compounds by healthy subjects.
Collapse
Affiliation(s)
| | - Ellen Mayara Souza Cruz
- Post Graduation Program of Experimental Pathology, Universidade Estadual de Londrina - UEL, Paraná, Brazil
| | - Carlos Vinícius Dalto da Rosa
- Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, Paraná, Brazil
| | - Roberta Carvalho Cesário
- Department of Anatomy, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | | | | | - Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Biology, Biological Science Center, Universidade Estadual do Norte do Paraná - UENP, Luiz Meneghel Campus, Bandeirantes, Paraná, Brazil; Post Graduation Program of Experimental Pathology, Universidade Estadual de Londrina - UEL, Paraná, Brazil.
| |
Collapse
|
18
|
Abstract
Heart failure is a worldwide pandemic influencing 26 million individuals worldwide and is expanding. Imbalanced redox homeostasis in cardiac cells alters the structure and function of the cells, which leads to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure. Various targets and agents acting on these such as siRNA, miRNA, interleukin-1, opioids, vasodilators, and SGLT2 inhibitors are being evaluated for heart failure, and nuclear factor erythroid 2-related factor 2 (NRF2) is one of them. NRF2 is a master transcription factor which is expressed in most of the tissues and exhibits a major role in amplification of the antioxidant pathways associated with the enzymes present in myocardium. Increased ROS generation and PI3K-Akt signaling can activate the receptor NRF2. Various in vitro and in vivo and few clinical studies suggested NRF2 may possess a potential for targeting oxidative stress-induced cardiovascular diseases including heart failures. All these studies collectively propose that upregulation of NRF2 will attenuate the increase in hemodynamic stress and provide beneficial role in cardiovascular diseases. The current review shall familiarize readers about the regulations and functions of NRF2. We have also discussed the current evidences suggesting beneficial role of NRF2 activators in heart failure. Graphical abstract.
Collapse
|
19
|
Jin A, Cheng H, Xia L, Ye S, Yang C. Inhibition of sphingomyelin synthase 2 relieves hypoxia-induced cardiomyocyte injury by reinforcing Nrf2/ARE activation via modulation of GSK-3β. Hum Exp Toxicol 2020; 40:791-800. [PMID: 33111559 DOI: 10.1177/0960327120969958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sphingomyelin synthase 2 (SMS2) is a vital contributor to tissue injury and affects various pathological processes. However, whether SMS2 participates in the modulation of cardiac injury in myocardial infarction has not been determined. This study aimed to evaluate the potential role of SMS2 in the regulation of cardiomyocyte injury induced by hypoxia, an in vitro model for studying myocardial infarction. Our data revealed that SMS2 expression was significantly upregulated in cardiomyocytes in response to hypoxia. Loss-of-function experiments revealed that knockdown of SMS2 markedly restored the viability of cardiomyocytes impaired by hypoxia, and attenuated hypoxia-evoked apoptosis and reactive oxygen species (ROS) generation. In contrast, cardiomyocytes that highly expressed SMS2 were more sensitive to hypoxia-induced injury. Moreover, SMS2 deficiency enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling through inactivation of glycogen synthase kinase-3β. Notably, suppression of Nrf2 markedly abrogated SMS2 knockdown-mediated cardioprotective effects on hypoxia-exposed cardiomyocytes. Our results illustrate that downregulation of SMS2 exerts a cardioprotective function by protecting cardiomyocytes from hypoxia-induced apoptosis and oxidative stress through enhancement of Nrf2 activation. Our study indicates a potential role of SMS2 in the modulation of cardiac injury, which may contribute to the progression of myocardial infarction.
Collapse
Affiliation(s)
- Aiping Jin
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of 117799Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Haijuan Cheng
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of 117799Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Lina Xia
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of 117799Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Sha Ye
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of 117799Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| | - Cuiling Yang
- Geriatric Cardiovascular Department, The Second Affiliated Hospital of 117799Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Yan L, Cheng G, Yang G. GSKIP protects cardiomyocytes from hypoxia/reoxygenation-induced injury by enhancing Nrf2 activation via GSK-3β inhibition. Biochem Biophys Res Commun 2020; 532:68-75. [PMID: 32828530 DOI: 10.1016/j.bbrc.2020.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/24/2023]
Abstract
Glycogen synthase kinase (GSK)-3β interaction protein (GSKIP), a key regulator of signaling transduction, is implicated in multiple pathological processes. However, whether GSKIP is involved in myocardial infarction is unknown. The present study was designed to determine the potential involvement of GSKIP in myocardial hypoxia/reoxygenation (H/R) injury, as an in vitro model for the study of myocardial infarction. Our data showed that H/R treatment triggered a marked decrease in GSKIP expression in cardiomyocytes. The upregulation of GSKIP significantly rescued the decreased viability of H/R-exposed cardiomyocytes and attenuated H/R-induced apoptosis and reactive oxygen species (ROS) generation. On the contrary, the depletion of GSKIP enhanced the sensitivity of cardiomyocytes to H/R-induced injury. Further data exhibited that GSKIP overexpression upregulated the nuclear expression of nuclear factor-erythroid-derived 2-related factor 2 (Nrf2) and increased Nrf2/antioxidant response element (ARE)-mediated transcription activity associated with upregulation of GSK-3β phosphorylation. Interestingly, inhibition of GSK-3β by a chemical inhibitor markedly enhanced Nrf2/ARE activation and abrogated GSKIP depletion-exacerbated sensitivity to H/R-induced injury. In addition, Nrf2 inhibition markedly reversed GSKIP overexpression-induced cardioprotective effect against H/R injury. Overall, these results demonstrate that overexpression of GSKIP alleviates H/R-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2/ARE antioxidant signaling via GSK-3β inhibition. Our study indicates a potential role of GSKIP in myocardial infarction and GSKIP may serve as a promising molecular target for cardioprotection.
Collapse
Affiliation(s)
- Li Yan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Guang Yang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
21
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
22
|
Pterostilbene complexed with cyclodextrin exerts antimicrobial and anti-inflammatory effects. Sci Rep 2020; 10:9072. [PMID: 32494020 PMCID: PMC7271226 DOI: 10.1038/s41598-020-66031-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Resveratrol (RES) is a natural polyphenol with potential as an adjunctive therapeutic modality for periodontitis. However, its inferior pharmacokinetics and toxicity concerns about its commonly used solvent dimethyl sulfoxide (DMSO) hinder translation to clinical applicability. Our study aimed to investigate the comparative antimicrobial properties of RES and its analogues (pterostilbene [PTS], oxyresveratrol [OXY] and piceatannol [PIC]), utilizing 2-hydroxypropyl-β-cyclodextrin (HPβCD) as a solubiliser, which has a well-documented safety profile and FDA approval. These properties were investigated against Fusobacterium nucleatum, a key periodontal pathogen. PTS demonstrated the most potent antibacterial effects in HPβCD, with MIC > 60-fold lower than that of RES, OXY and PIC. In addition, PTS inhibited F. nucleatum biofilm formation. PTS exerted antimicrobial effects by eliciting leakage of cellular contents, leading to loss of bacterial cell viability. PTS also conferred immunomodulatory effects on F. nucleatum-challenged macrophages via upregulation of antioxidant pathways and inhibition of NF-κB activation. Given the superior antimicrobial potency of PTS against F. nucleatum compared to RES and other analogues, and coupled with its immunomodulatory properties, PTS complexed with HPβCD holds promise as a candidate nutraceutical for the adjunctive treatment of periodontitis.
Collapse
|
23
|
Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.
Collapse
|
24
|
The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020; 25:633-641. [PMID: 32014454 DOI: 10.1016/j.drudis.2020.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates numerous signaling transductions and pathological states, from cell growth, inflammation, apoptosis, and heart failure to cancer. Recent studies have validated the feasibility of targeting GSK-3β for its therapeutic potential to maintain myocardial homeostasis. Herein, we review the multifactorial roles of GSK-3β in cardiac abnormalities, focusing primarily on recent investigations into myocardial survival. In addition, we discuss the cardioprotective potential of divergent GSK-3β inhibitors. Finally, we also highlight crosstalk between the various mechanisms underlying abnormal myocardial functions in which GSK-3β is involved.
Collapse
|
25
|
Liu D, Ma Z, Xu L, Zhang X, Qiao S, Yuan J. PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades. Aging (Albany NY) 2019; 11:10061-10073. [PMID: 31733141 PMCID: PMC6914429 DOI: 10.18632/aging.102418] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a widely used and potent anticancer agent, but DOX dose-dependently induced cardiotoxicity greatly limits its use in clinic. Pterostilbene, a natural analog of resveratrol, is a known antioxidant and exerts myocardial protection. The present study explored the action and detailed mechanism of pterostilbene on DOX-treated cardiomyocytes. We investigated the effects of pterostilbene on established acute DOX-induced cardiotoxicity models in both H9c2 cells treated with 1 μM DOX and C57BL/6 mice with DOX (20 mg/kg cumulative dose) exposure. Pterostilbene markedly alleviated the DOX exposure-induced acute myocardial injury. Both in vitro and in vivo studies revealed that pterostilbene inhibited the acute DOX exposure-caused oxidative stress and mitochondrial morphological disorder via the PGC1α upregulation through activating AMPK and via PGC1α deacetylation through enhancing SIRT1. However, these effects were partially reversed by knockdown of AMPK or SIRT1 in vitro and treatment of Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) in vivo. Our results indicate that pterostilbene protects cardiomyocytes from acute DOX exposure-induced oxidative stress and mitochondrial damage via PGC1α upregulation and deacetylation through activating AMPK and SIRT1 cascades.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Liqun Xu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Xiaoyan Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Shubin Qiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiansong Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|