1
|
Ferreira JCC, Pereira AMN, Aranha ESP, Moraes CC, de Souza Ferreira B, Sartoratto A, Goes GR, Moraes TMP, Moraes WP. Cyperus articulatus: Anti-inflammatory and antinociceptive activity of a medicinal plant from the Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118947. [PMID: 39419300 DOI: 10.1016/j.jep.2024.118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperus articulatus L., popularly known as priprioca, is a plant used in the Amazon for perfumed baths and homemade perfumes. In traditional medicine, its rhizomes are used to treat diseases related to inflammatory processes. AIM OF THE STUDY Due to its promising bioactive properties, this study sought to investigate its phytochemistry and the anti-inflammatory and antinociceptive activity of the essential oil obtained from C. articulatus (CAEO) in in vitro and in vivo tests. MATERIAL AND METHODS The essential oil was obtained from the rhizomes of C. articulatus and extraction was carried out via hydrodistillation. Then, the oil was analyzed by GC-MS analyses. Initially, culture of RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS) was used to evaluate cytotoxicity and interference in the production of mediators of the inflammatory process (nitrite, IL-1β, TNF-α and PGE2) after exposure to CAEO. The acute toxicity of CAEO was evaluated and the results were used to define doses of 10, 100 and 400 mg kg-1 for evaluation of CAEO in in vivo tests using mice. The carrageenan-induced air pouch models and the Evans test were used to evaluate the anti-inflammatory activity by measuring the number of total leukocytes and vascular permeability. Antinociceptive activity was evaluated via tests of contortions induced by acetic acid, hot plate, and formalin. RESULTS Treatment with CAEO reduced the levels of nitrite IL-1β, TNF-α and PGE2 in the macrophage culture, revealing its anti-inflammatory potential. CAEO decreased carrageenan-induced leukocyte migration and vascular permeability, which are important events related to the acute inflammatory response. Nociceptive activity was significantly inhibited by CAEO in the acetic acid-induced contortions model, hot plate, and in both phases of the formalin test. The treatment with naloxane reversed the antinociceptive effect observed in the formalin test, suggesting the participation of opioid receptors in the mechanism of action of CAEO. CONCLUSION The observed results reveal the anti-inflammatory and antinocipeptive activity of C. articulatus essential oil in vivo and support the traditional use of this plant in the treatment of different diseases involving inflammation and pain.
Collapse
Affiliation(s)
| | | | - Elenn Suzany Pereira Aranha
- Laboratório de Farmacologia, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil; Programa de Pós-graduação em Biociências (PPGBIO), Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil.
| | - Camila Castilho Moraes
- Laboratório de Farmacologia, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil.
| | - Breno de Souza Ferreira
- Laboratório de Farmacologia, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil.
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Grazielle Ribeiro Goes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil.
| | - Waldiney Pires Moraes
- Laboratório de Farmacologia, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil.
| |
Collapse
|
2
|
Ojo OA, Oladepo FS, Ogunlakin AD, Ayokunle DI, Odugbemi AI, Babatunde DE, Ojo AB, Ajayi-Odoko OA, Ajiboye BO, Dahunsi SO. Spilanthes filicaulis (Schumach. & Thonn.) C. D Adam leaf extract prevents assault of streptozotocin on liver cells via inhibition of oxidative stress and activation of the NrF2/Keap1, PPARγ, and PTP1B signaling pathways. PLoS One 2024; 19:e0306039. [PMID: 38924022 PMCID: PMC11207034 DOI: 10.1371/journal.pone.0306039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Spilanthes filicaulis (Schumach. & Thonn.) C. D Adam is a shrubby plant of the Asteraceae family that has medicinal benefits for the pharmaceutical and cosmetic industries. PURPOSE The purpose of this study was to assess the effectiveness of Spilanthes filicaulis leaf extract in a streptozotocin (STZ)-induced rat model and the associated signaling pathways. METHODS A sample of 25 male Wistar rats was randomly assigned to groups I, II, III, IV, and V. Each group included five animals, i.e., control rats, diabetic control rats, diabetic rats treated with metformin, and diabetic rats treated with 150 mg/kg/bw and 300 mg/kg/bw of the methanolic extract of S. filicaulis leaves (MESFL). Treatment was administered for 15 successive days via oral gavage. After 15 days, the rats were evaluated for fasting blood glucose (FBG), glycated hemoglobin (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (MDA), hexokinase, and glucose-6-phosphatase activities. Gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR-γ), kelch-like ECH-associated protein 1 (Keap1), protein tyrosine phosphatase 1B (PTP1B) and the antiapoptotic protein caspase-3 were examined. RESULTS MESFL was administered to diabetic rats, and changes in body weight, fasting blood glucose (FBG) and HbA1c were restored. Furthermore, in diabetic rats, S. filicaulis significantly reduced the levels of triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) and significantly increased HDL. S. filicaulis improved ALT, AST, and ALP enzyme activity in diabetic rats. MDA levels decreased considerably with increasing activity of antioxidant enzymes, such as GST, SOD, CAT and GSH, in diabetic liver rats treated with S. filicaulis. Diabetic rats treated with MESFL and metformin exhibited upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Kelch-like ECH-associated protein 1 (Keap1) and protein tyrosine phosphatase 1B (PTP1B) mRNA expression in the liver was downregulated in diabetic rats treated with MESFL and metformin. In addition, MESFL downregulated the mRNA expression of caspase-3 in diabetic rats. CONCLUSION It can be concluded from the data presented in this study that MESFL exerts a protective effect on diabetic rats due to its antidiabetic, antioxidant, antihyperlipidemic and antiapoptotic effects and may be considered a treatment for T2DM.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Laboratory (PMTCB-RL), Biochemistry Programme, Bowen University, Iwo, Nigeria
| | - Fiyinfoluwa Stephen Oladepo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Laboratory (PMTCB-RL), Biochemistry Programme, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Laboratory (PMTCB-RL), Biochemistry Programme, Bowen University, Iwo, Nigeria
| | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Laboratory (PMTCB-RL), Biochemistry Programme, Bowen University, Iwo, Nigeria
| | | | | | | | | | | |
Collapse
|
3
|
Sofidiya MO, Ikechukwu JU, Nnah VE, Olaleye OO, Basheeru K, Sowemimo AA, Ajayi AM. Anti-inflammatory and antinociceptive activities of Daniellia oliveri (Fabaceace) stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116337. [PMID: 36868442 DOI: 10.1016/j.jep.2023.116337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Daniellia oliveri (Rolfe) Hutch. & Dalziel (Fabaceae) is used for the treatment of inflammatory diseases and pains (chest pain, toothache and lumbago) and rheumatism. AIM OF THE STUDY The study investigates the anti-inflammatory and antinociceptive properties of D. oliveri and possible mechanism of antiinflammatory action. MATERIALS AND METHODS Acute toxicity of the extract was evaluated in mice using the limit test. The anti-inflammatory activity was assessed in xylene-induced paw oedema and carrageenan-induced air-pouch models at doses of 50, 100 and 200 mg/kg, p.o. Volume of exudate, total protein, leukocyte counts, myeloperoxidase (MPO) and concentration of cytokines (TNF-α and IL-6) were measured in the exudate of rats in the carrageenan-induced air-pouch model. Other parameters include lipid peroxidation (LPO), nitric oxide (NO) and antioxidant indices (SOD, CAT and GSH). Histopathology of the air pouch tissue was also carried out. The antinociceptive effect was assessed using acetic acid-induced writhing, tail flick and formalin tests. Locomotor activity was done in the open field test. The extract was analysed with HPLC-DAD-UV technique. RESULTS The extract showed significant anti-inflammatory effect (73.68 and 75.79%, inhibition) in xylene-induced ear oedema test at the dose of 100 and 200 mg/kg, respectively. In carrageenan air pouch model, the extract significantly reduced exudate volume, protein concentration, the migration of leukocytes and MPO production in the exudate. The concentrations of cytokines TNF-α (12.25 ± 1.80 pg/mL) and IL-6 (21.12 pg/mL) in the exudate at the dose of 200 mg/kg were reduced compared to carrageenan alone group (48.15 ± 4.50 pg/mL; 82.62 pg/mL) respectively. The extract showed significant increase in the activities of CAT and SOD and GSH concentration. The histopathological assessment of the pouch lining revealed reduction of immuno-inflammatory cell influx. Nociception was significantly inhibited by the extract in acetic acid-induced writhing model and the second phase of formalin test indicating a peripheral mechanism of action. The open field test showed that D. oliveri did not alter locomotor activity. The acute toxicity study did not cause mortality or signs of toxicity at 2000 mg/kg, p.o. We identified and quantified caffeic acid, p-coumaric acid, ferulic acid, rutin, apigenin-7-glucoside, quercetin and kaempferol in the extract. CONCLUSION The results of our study showed that the stem bark extract of D. oliveri possesses anti-inflammatory and antinociceptive activities thereby supporting its traditional use in the treatment of some inflammatory and painful disorders.
Collapse
Affiliation(s)
- Margaret O Sofidiya
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Johnbosco U Ikechukwu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Victoria E Nnah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Olubusola O Olaleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Kazeem Basheeru
- Central Research Laboratory, University of Lagos, Lagos, Nigeria.
| | - Abimbola A Sowemimo
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
4
|
Nayek U, Basheer Ahamed SI, Mansoor Hussain UH, Unnikrishnan MK, Abdul Salam AA. Computational investigations of indanedione and indanone derivatives in drug discovery: Indanone derivatives inhibits cereblon, an E3 ubiquitin ligase component. Comput Biol Chem 2022; 101:107776. [PMID: 36252444 DOI: 10.1016/j.compbiolchem.2022.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cereblon, an extensively studied multifunctional protein, is a Cullin 4-RING E3 ubiquitin ligase complex component. Cereblon is a well-known target of thalidomide and its derivatives. Cereblon is involved in multiple myeloma cell apoptosis. When ligands such as thalidomide and lenalidomide bind to cereblon, it recognizes various neosubstrates based on the ligand shape and properties. We have identified novel CRBN inhibitors, namely DHFO and its analogs, with structural features that are slightly different from thalidomide but stronger cereblon-binding affinity. We selected indanedione and indanone derivatives from the literature to understand and compare their cereblon-mediated substrate recognition potential. METHODS Computational investigations of possible CRBN inhibitors were investigated by molecular docking with Autodock Vina and DockThor programs. The properties of the compounds' ADME/T and drug-likeness were investigated. A molecular dynamics study was carried out for four selected molecules, and the molecular interactions were analyzed using PCA-based FEL methods. The binding affinity was calculated using the MM/PBSA method. RESULTS We conducted computational investigations on 68 indanedione and indanone derivatives binding with cereblon. Ten molecules showed better CRBN binding affinity than thalidomide. We studied the drug-likeness properties of the selected ten molecules, and four of the most promising molecules (DHFO, THOH, DIMS, and DTIN) were chosen for molecular dynamics studies. The MM/PBSA calculations showed that the DHFO, already shown to be a 5-LOX/COX2 inhibitor, has the highest binding affinity of - 163.16 kJ/mol with cereblon. CONCLUSION The selected CRBN inhibitor DHFO has demonstrated the highest binding affinity with cereblon protein compared to other molecules. Thalidomide and its derivatives have a new substitute in the form of DHFO, which produces an interaction hotspot on the surface of the cereblon. Ease of chemical synthesis, low toxicity, versatile therapeutic options, and pleiotropism of DHFO analogs provide an opportunity for exploring clinical alternatives with versatile therapeutic potential for a new category of indanedione molecules as novel modulators of E3 ubiquitin ligases.
Collapse
|
5
|
DeJulius CR, Dollinger BR, Kavanaugh TE, Dailing E, Yu F, Gulati S, Miskalis A, Zhang C, Uddin J, Dikalov S, Duvall CL. Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo. Bioconjug Chem 2021; 32:928-941. [PMID: 33872001 PMCID: PMC8188607 DOI: 10.1021/acs.bioconjchem.1c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2•- scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2•- scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric Dailing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Angelo Miskalis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Caiyun Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Jashim Uddin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Wang YR, Zhang XN, Meng FG, Zeng T. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicol Mech Methods 2021; 31:334-342. [PMID: 33627030 DOI: 10.1080/15376516.2021.1894624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages can polarize into different phenotypes in response to different microenvironmental stimuli. Macrophage polarization has been assigned to two extreme states, namely proinflammatory M1 and anti-inflammatory M2. Accumulating evidences have demonstrated that M1 polarized macrophages contribute to various toxicants-induced deleterious effects. Switching macrophages from proinflammatory M1 phenotype toward anti-inflammatory M2 phenotype could be a promising approach for treating various inflammatory diseases. Studies in the past few decades have revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. Specifically, activation of Nrf2 could block M1 stimuli-induced production of proinflammatory cytokines and chemokines, and shift the polarization of macrophages toward M2 by cross-talking with nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), peroxisome proliferator-activated receptor γ (PPARγ), and autophagy. Importantly, a great number of studies have confirmed the beneficial effects of natural and synthesized Nrf2 agonists on various inflammatory diseases; however, most of these compounds are far away from clinical application due to lack of characterization and defects of study designs. Interestingly, some endogenous Nrf2 inducers and compounds with dual activities (such as the Nrf2 inducing and CO releasing effects) exhibit potent anti-inflammatory effects, which points out an important direction for future researches.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan-Ge Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Shrungeswara AH, Unnikrishnan MK. Energy Provisioning and Inflammasome Activation: The Pivotal Role of AMPK in Sterile Inflammation and Associated Metabolic Disorders. Antiinflamm Antiallergy Agents Med Chem 2020; 20:107-117. [PMID: 32938355 DOI: 10.2174/1871523019666200916115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Body defenses and metabolic processes probably co-evolved in such a way that rapid, energy-intensive acute inflammatory repair is functionally integrated with energy allocation in a starvation/ infection / injury-prone primitive environment. Disruptive metabolic surplus, aggravated by sedentary lifestyle induces chronic under-activation of AMPK, the master regulator of intracellular energy homeostasis. Sudden increase in chronic, dysregulated 'sterile' inflammatory disorders probably results from a shift towards calorie rich, sanitized, cushioned, injury/ infection free environment, repositioning inflammatory repair pathways towards chronic, non-microbial, 'sterile', 'low grade', and 'parainflammation'. AMPK, (at the helm of energy provisioning) supervises the metabolic regulation of inflammasome activation, a common denominator in lifestyle disorders. DISCUSSION In this review, we discuss various pathways linking AMPK under-activation and inflammasome activation. AMPK under-activation, the possible norm in energy-rich sedentary lifestyle, could be the central agency that stimulates inflammasome activation by multiple pathways such as 1: decreasing autophagy, and accumulation of intracellular DAMPs, (particulate crystalline molecules, advanced glycation end-products, oxidized lipids, etc.) 2: stimulating a glycolytic shift (pro-inflammatory) in metabolism, 3: promoting NF-kB activation and decreasing Nrf2 activation, 4: increasing reactive oxygen species (ROS) formation, Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress. CONCLUSION The 'inverse energy crisis' associated with calorie-rich, sedentary lifestyle, advocates dietary and pharmacological interventions for treating chronic metabolic disorders by overcoming / reversing AMPK under-activation.
Collapse
Affiliation(s)
- Akhila H Shrungeswara
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | |
Collapse
|
8
|
Wen W, Lin Y, Ti Z. Antidiabetic, Antihyperlipidemic, Antioxidant, Anti-inflammatory Activities of Ethanolic Seed Extract of Annona reticulata L. in Streptozotocin Induced Diabetic Rats. Front Endocrinol (Lausanne) 2019; 10:716. [PMID: 31708869 PMCID: PMC6819323 DOI: 10.3389/fendo.2019.00716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Annona reticulata L. (Bullock's heart) is a pantropic tree commonly known as custard apple, which is used therapeutically for a variety of maladies. The present research was carried out to evaluate the possible protective effects of Annona reticulata L. (A. reticulata) ethanolic seed extract on an experimentally induced type 2 diabetes rat model. Male Albino Wistar rats were randomly divided into five groups with six animals in each group viz., control rats in group I, diabetic rats in group II, diabetic rats with 50 and 100 mg/kg/bw of ethanolic seed extract of A. reticulata in groups III and IV, respectively, and diabetic rats with metformin in group V. Treatment was given for 42 consecutive days through oral route by oro-gastric gavage. Administration of A. reticulata seed extract to diabetes rats significantly restored the alterations in the levels of body weight, food and water intake, fasting blood glucose (FBG), insulin levels, insulin sensitivity, HbA1c, HOMA-IR, islet area and insulin positive cells. Furthermore, A. reticulata significantly decreased the levels of triglycerides, cholesterol, LDL, and significantly increased the HDL in diabetic rats. A. reticulata effectively ameliorated the enzymatic (ALT, AST, ALP, GGT) and modification of histopathological changes in diabetic rats. The serum levels of the BUN, creatinine levels, uric acid, urine volume, and urinary protein were significantly declined with a significant elevation in CCr in diabetic rats treated with A. reticulata. MDA and NO levels were significantly reduced with an enhancement in SOD, CAT, and GPx antioxidant enzyme activities in the kidney, liver, and pancreas of diabetic rats treated with A. reticulata. Diabetic rats treated with A. reticulata have shown up-regulation in mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), Heme oxygenase-1 (HO-1) and protein expression level of Nrf2 with diminution in Keap1 mRNA expression level in pancreas, kidney, and liver. From the outcome of the current results, it can be inferred that seed extract of A. reticulata exhibits a protective effect in diabetic rats through its anti-diabetic, anti-hyperlipidemic, antioxidant and anti-inflammatory effects and could be considered as a promising treatment therapy in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Wenbin Wen
- Department of Nephrology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yukiat Lin
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Zhenyu Ti
- The Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, China
- *Correspondence: Zhenyu Ti
| |
Collapse
|