1
|
Liu G, Zhou L, Mu K, Peng L, Ran F, Feng G, Liu Y. Based on Spectrum-Effect Relationship, Network Pharmacology, and Molecular Docking, the Material Basis and Mechanism of Antioxidant Effect of Miao Medicine Indigofera stachyoides Lindl Were Studied. ACS OMEGA 2024; 9:42199-42211. [PMID: 39431090 PMCID: PMC11483384 DOI: 10.1021/acsomega.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Indigofera stachyoides Lindl (IS.Lindl, Xuerensen in Chinese) is a traditional medicine frequently utilized by ethnic minorities; nevertheless, the chemicals responsible for these effects have not been identified. Ultraperformance liquid chromatography (UPLC) was utilized to establish the fingerprints of various origins. Free radical scavenging in 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and 2,2-biazobis(3-ethyl-phenylpropylthiazole-6-sulfonate) diammonium salt (ABTS) assays was used to evaluate the antioxidant activity. Partial least-squares regression analysis (PLSR) and gray correlation analysis (GRA) were utilized to determine the spectral-effect relationship in order to screen the antioxidant pharmacodynamic components. The corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrated Traditional Chinese Medicine (ITCM). Disease-related targets for antioxidants were collected from GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The PPI interaction network analysis, GO enrichment analysis, and KEGG pathway analysis were established using the online analysis platform, and Autodock software assisted in aligning the components with important targets. The fingerprint profile revealed 32 common peaks, and eight standards were identified using standard comparison, with similarity ranging from 0.920 to 0.995. The primary antioxidant components include proanthocyanidin B1, epicatechin, and proanthocyanidin B3. Important targets include EGFR, CASP3, IL6, PTGS2, and TNF. Important signaling pathways include the AGE-RAGE signaling pathways in diabetic complications, the MAPK signaling pathway, the IL-17 signaling pathway, and the pathways in cancer. The results of molecular docking technology showed that the main active ingredients of the drug could bind well to the core target. In this study, we successfully established the spectral-effect relationship of IS.Lindl and clarified the effective substances of IS.Lindl. Through network pharmacology and molecular docking methods, it was clear that IS.Lindl plays an antioxidant role through multicomponent, multitarget, and multipathway synergy.
Collapse
Affiliation(s)
- Gang Liu
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | | | - Kailang Mu
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Leqiang Peng
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Fei Ran
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Guo Feng
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yuchen Liu
- Guizhou University of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| |
Collapse
|
2
|
Ali BM, Al-Mokaddem AK, Selim HMRM, Alherz FA, Saleh A, Hamdan AME, Ousman MS, El-Emam SZ. Pinocembrin's protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways. Biomed Pharmacother 2024; 176:116854. [PMID: 38824834 DOI: 10.1016/j.biopha.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Acute pancreatitis (APS) is a prevalent acute pancreatic inflammation, where oxidative stress, inflammatory signaling pathways, and apoptosis activation contribute to pancreatic injury. METHODS Pinocembrin, the predominant flavonoid in propolis, was explored for its likely shielding effect against APS provoked by two intraperitoneal doses of L-arginine (250 mg / 100 g) in a rat model. RESULTS Pinocembrin ameliorated the histological and immunohistochemical changes in pancreatic tissues and lowered the activities of pancreatic amylase and lipase that were markedly elevated with L-arginine administration. Moreover, pinocembrin reinstated the oxidant/antioxidant equilibrium, which was perturbed by L-arginine, and boosted the pancreatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Pinocembrin markedly reduced the elevation in serum C-reactive protein (CRP) level induced by L-arginine. Additionally, it decreased the expression of high motility group box protein 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NOD-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in the pancreas. Furthermore, it also reduced myeloperoxidase (MPO) activity. Pinocembrin markedly downregulated miR-34a-5p expression and upregulated the protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and Sirtuin 1 (SIRT1) and the gene expression level of the inhibitor protein of NF-κB (IκB-α), along with normalizing the Bax/Bcl-2 ratio. CONCLUSIONS Pinocembrin notably improved L-arginine-induced APS by its antioxidant, anti-inflammatory, and anti-apoptotic activities. Pinocembrin exhibited a protective role in APS by suppressing inflammatory signaling via the TLR4/NF-κB/NLRP3 pathway and enhancing cytoprotective signaling via the miR-34a-5p/SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, P.O.Box 71666, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Mona S Ousman
- Emergency medical services, College of Applied Sciences, Almaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt.
| |
Collapse
|
3
|
Lee J, Lim JW, Kim H. Astaxanthin Inhibits Oxidative Stress-Induced Ku Protein Degradation and Apoptosis in Gastric Epithelial Cells. Nutrients 2022; 14:nu14193939. [PMID: 36235593 PMCID: PMC9570747 DOI: 10.3390/nu14193939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin–proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of β-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin–proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
4
|
Naito Y, Uchida K, Toyokuni S. The new era for redox research. Free Radic Res 2021; 54:787-789. [PMID: 32450729 DOI: 10.1080/10715762.2020.1774177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Li F, Song X, Xu J, Shi Y, Hu R, Ren Z, Qi Q, Lü H, Cheng X, Hu J. Morroniside protects OLN-93 cells against H 2O 2-induced injury through the PI3K/Akt pathway-mediated antioxidative stress and antiapoptotic activities. Cell Cycle 2021; 20:661-675. [PMID: 33734020 DOI: 10.1080/15384101.2021.1889186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative disorders, including spinal cord injury (SCI), result in oxidative stress-induced cell damage. Morroniside (MR), a major active ingredient of the Chinese herb Shan Zhu Yu, has been shown to ameliorate oxidative stress and inflammatory response. Our previous study also confirmed that morroniside protects SK-N-SH cell line (human neuroblastoma cells) against oxidative impairment. However, it remains unclear whether MR also plays a protective role for oligodendrocytes that are damaged following SCI. The present study investigated the protective effects of MR against hydrogen peroxide (H2O2)-induced cell death in OLN-93 cells. MR protected OLN-93 cells from H2O2-induced injury, attenuated H2O2-induced increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and blocked the reduction of mitochondrial membrane potential (MMP) induced by H2O2. MR enhanced the activity of the antioxidant enzyme superoxide dismutase (SOD) and suppressed H2O2-induced downregulation of the antiapoptotic protein Bcl-2 and activation of the proapoptotic protein caspase-3. Finally, we found that LY294002, a specific inhibitor of the PI3K/Akt pathway, inhibited the protective effect of MR against H2O2-induced OLN-93 cell injury in the MTT and TUNEL assays. LY294002 also inhibited the expression of SOD and Bcl-2, and increased the expression of iNOS and c-caspase-3 induced by MR treatment. MR exerts protective effects against H2O2-induced OLN-93 cell injury through the PI3K/Akt signaling pathway-mediated antioxidative stress and antiapoptotic activities. MR may provide a potential strategy for SCI treatment or other related neurodegeneration.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Xue Song
- Department of Central Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jiaxin Xu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Yujiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Ruina Hu
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Zhen Ren
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xiaoxin Cheng
- Department of Cell Biology College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Jianguo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
6
|
Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Sun M, Yang P, Jiang S, Ying X, Du Y. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics 2020; 10:2342-2357. [PMID: 32104507 PMCID: PMC7019163 DOI: 10.7150/thno.40395] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/12/2019] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) caused by sepsis is a serious disease which mitochondrial oxidative stress and inflammatory play a key role in its pathophysiology. Ceria nanoparticles hold strong and recyclable reactive oxygen species (ROS)-scavenging activity, have been applied to treat ROS-related diseases. However, ceria nanoparticles can't selectively target mitochondria and the ultra-small ceria nanoparticles are easily agglomerated. To overcome these shortcomings and improve therapeutic efficiency, we designed an ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Methods: Ceria nanoparticles were modified with triphenylphosphine (TCeria NPs), followed by coating with ROS-responsive organic polymer (mPEG-TK-PLGA) and loaded atorvastatin (Atv/PTP-TCeria NPs). The physicochemical properties, in vitro drug release profiles, mitochondria-targeting ability, in vitro antioxidant, anti-apoptotic activity and in vivo treatment efficacy of Atv/PTP-TCeria NPs were examined. Results: Atv/PTP-TCeria NPs could accumulate in kidneys and hold a great ability to ROS-responsively release drug and TCeria NPs could target mitochondria to eliminate excessive ROS. In vitro study suggested Atv/PTP-TCeria NPs exhibited superior antioxidant and anti-apoptotic activity. In vivo study showed that Atv/PTP-TCeria NPs effectively decreased oxidative stress and inflammatory, could protect the mitochondrial structure, reduced apoptosis of tubular cell and tubular necrosis in the sepsis-induced AKI mice model. Conclusions: This ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin has favorable potentials in the sepsis-induced AKI therapy.
Collapse
|