1
|
Koirala P, Shalash AO, Chen SPR, Faruck MO, Wang J, Hussein WM, Khalil ZG, Capon RJ, Monteiro MJ, Toth I, Skwarczynski M. Polymeric Nanoparticles as Oral and Intranasal Peptide Vaccine Delivery Systems: The Role of Shape and Conjugation. Vaccines (Basel) 2024; 12:198. [PMID: 38400181 PMCID: PMC10893271 DOI: 10.3390/vaccines12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucosal vaccines are highly attractive due to high patient compliance and their suitability for mass immunizations. However, all currently licensed mucosal vaccines are composed of attenuated/inactive whole microbes, which are associated with a variety of safety concerns. In contrast, modern subunit vaccines use minimal pathogenic components (antigens) that are safe but typically poorly immunogenic when delivered via mucosal administration. In this study, we demonstrated the utility of various functional polymer-based nanostructures as vaccine carriers. A Group A Streptococcus (GAS)-derived peptide antigen (PJ8) was selected in light of the recent global spread of invasive GAS infection. The vaccine candidates were prepared by either conjugation or physical mixing of PJ8 with rod-, sphere-, worm-, and tadpole-shaped polymeric nanoparticles. The roles of nanoparticle shape and antigen conjugation in vaccine immunogenicity were demonstrated through the comparison of three distinct immunization pathways (subcutaneous, intranasal, and oral). No additional adjuvant or carrier was required to induce bactericidal immune responses even upon oral vaccine administration.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Sung-Po R. Chen
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Mohammad O. Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| |
Collapse
|
2
|
Shalash AO, Becker L, Yang J, Giacomin P, Pearson M, Hussein WM, Loukas A, Skwarczynski M, Toth I. Oral Peptide Vaccine against Hookworm Infection: Correlation of Antibody Titers with Protective Efficacy. Vaccines (Basel) 2021; 9:1034. [PMID: 34579271 PMCID: PMC8472562 DOI: 10.3390/vaccines9091034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Approximately 0.4 billion individuals worldwide are infected with hookworm. An effective vaccine is needed to not only improve the health of those affected and at high risk, but also to improve economic growth in disease-endemic areas. An ideal anti-hookworm therapeutic strategy for mass administration is a stable and orally administered vaccine. Oral vaccines are advantageous as they negate the need for trained medical staff for administration and do not require strict sterility conditions. Vaccination, therefore, can be carried out at a significantly reduced cost. One of the most promising current antigenic targets for hookworm vaccine development is the aspartic protease digestive enzyme (APR-1). Antibody-mediated neutralization of APR-1 deprives the worm of nourishment, leading to reduced worm burdens in vaccinated hosts. Previously, we demonstrated that, when incorporated into vaccine delivery systems, the APR-1-derived p3 epitope (TSLIAGPKAQVEAIQKYIGAEL) was able to greatly reduce worm burdens (≥90%) in BALB/c mice; however, multiple, large doses of the vaccine were required. Here, we investigated a variety of p3-antigen conjugates to optimize antigen delivery and establish immune response/protective efficacy relationships. We synthesized, purified, and characterized four p3 peptide-based vaccine candidates with: (a) lipidic (lipid core peptide (LCP)); (b) classical polymeric (polymethylacrylate (PMA)); and (c) novel polymeric (polyleucine in a branched or linear arrangement, BL10 or LL10, respectively) groups as self-adjuvanting moieties. BL10 and LL10 induced the highest serum anti-p3 and anti-APR-1 IgG titers. Upon challenge with rodent hookworms, the highest significant reduction in worm burden was observed in mice immunized with LL10. APR-1-specific serum IgG titers correlated with worm burden reduction. Thus, we provide the first vaccine-triggered immune response-protection relationship for hookworm infection.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (A.O.S.); (J.Y.); (W.M.H.); (I.T.)
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (L.B.); (P.G.); (M.P.); (A.L.)
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (A.O.S.); (J.Y.); (W.M.H.); (I.T.)
| | - Paul Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (L.B.); (P.G.); (M.P.); (A.L.)
| | - Mark Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (L.B.); (P.G.); (M.P.); (A.L.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (A.O.S.); (J.Y.); (W.M.H.); (I.T.)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; (L.B.); (P.G.); (M.P.); (A.L.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (A.O.S.); (J.Y.); (W.M.H.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (A.O.S.); (J.Y.); (W.M.H.); (I.T.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
3
|
Silva MRMD, Dysars LP, Santos EPD, Ricci Júnior E. Preparation of extemporaneous oral liquid in the hospital pharmacy. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Affiliation(s)
- Yabin Meng
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jun Wu
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
5
|
Moss DM, Curley P, Kinvig H, Hoskins C, Owen A. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol 2018; 12:223-236. [PMID: 29088978 DOI: 10.1080/17474124.2018.1399794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nano-scale formulations are being developed to improve the delivery of orally administered medicines, and the interactions between nanoformulations and the gastrointestinal luminal, mucosal and epithelial environment is currently being investigated. The mucosal surface of the gastrointestinal tract is capable of trapping and eliminating large particles and pathogens as part of the natural defences of the body, it is becoming clearer that nanoformulation properties such as particle size, charge, and shape, as well as mucous properties such as viscoelasticity, thickness, density, and turn-over time are all relevant to these interactions. However, progress has been slow to utilise this information to produce effective mucous-penetrating particles. Areas covered: This review focuses on delivery method of nanomedicines both into and across the gastrointestinal mucosal surface, and aims to summarise the biological barriers that exist to successful oral nanomedicine delivery and how these barriers may be investigated and overcome. Expert commentary: Despite successes in the laboratory, no nanotechnology-enabled products are currently in clinical use which either specifically target the intestinal mucous surface or cross the epithelial barrier intact. New nanomedicine-based treatments of local diseases (intestinal cancer, inflammation, infection) and systemic diseases are advancing towards clinical use, and offer genuine opportunities to improve therapy.
Collapse
Affiliation(s)
- Darren Michael Moss
- a School of Pharmacy, Faculty of Medicine and Health Sciences , Keele University , Keele , UK
| | - Paul Curley
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| | - Hannah Kinvig
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| | - Clare Hoskins
- a School of Pharmacy, Faculty of Medicine and Health Sciences , Keele University , Keele , UK
| | - Andrew Owen
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| |
Collapse
|
6
|
Maniego AR, Sutton AT, Gaborieau M, Castignolles P. Assessment of the Branching Quantification in Poly(acrylic acid): Is It as Easy as It Seems? Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alison R. Maniego
- Western
Sydney University, Medical Sciences Research Group (MSRG), Parramatta 2751, Australia
- Western
Sydney University, Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health (SSH), Parramatta 2751, Australia
| | - Adam T. Sutton
- Western
Sydney University, Medical Sciences Research Group (MSRG), Parramatta 2751, Australia
- Western
Sydney University, Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health (SSH), Parramatta 2751, Australia
| | - Marianne Gaborieau
- Western
Sydney University, Medical Sciences Research Group (MSRG), Parramatta 2751, Australia
- Western
Sydney University, Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health (SSH), Parramatta 2751, Australia
| | - Patrice Castignolles
- Western
Sydney University, Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health (SSH), Parramatta 2751, Australia
| |
Collapse
|
7
|
Suchaoin W, Bernkop-Schnürch A. Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine (Lond) 2017; 12:255-269. [PMID: 28093952 DOI: 10.2217/nnm-2016-0331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pre-uptake metabolism within the GI tract is responsible for the poor oral bioavailability of numerous drugs. As nanocarriers function as a 'shield', protecting incorporated drugs from enzymatic attack, there is an increasing interest in utilizing them as a tool for overcoming drug degradation. Degradation of carriers resulting in the release of incorporated drugs, mucus permeation, enzyme inhibitory properties and their toxicity are crucial factors that must be taken into account when designing proper nanocarriers. The use of polymer- and lipid-based nanocarriers as protective vehicles are discussed within this review. Lipid-based carriers and novel mucopenetrating particles seem to have a great potential in avoiding metabolizing enzymes. Accordingly, nanocarriers are promising tools for improving the bioavailability of drugs, being sensitive to a pre-uptake metabolism.
Collapse
Affiliation(s)
- Wongsakorn Suchaoin
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Lakkireddy HR, Urmann M, Besenius M, Werner U, Haack T, Brun P, Alié J, Illel B, Hortala L, Vogel R, Bazile D. Oral delivery of diabetes peptides - Comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev 2016; 106:196-222. [PMID: 26964477 DOI: 10.1016/j.addr.2016.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
While some orally delivered diabetes peptides are moving to late development with standard formulations incorporating functional excipients, the demonstration of the value of nanotechnology in clinic is still at an early stage. The goal of this review is to compare these two drug delivery approaches from a physico-chemical and a biopharmaceutical standpoint in an attempt to define how nanotechnology-based products can be differentiated from standard oral dosage forms for oral bioavailability of diabetes peptides. Points to consider in a translational approach are outlined to seize the opportunities offered by a better understanding of both the intestinal barrier and of nano-carriers designed for oral delivery.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Matthias Urmann
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Melissa Besenius
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Ulrich Werner
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Torsten Haack
- Diabetes Division, Sanofi Research and Development, Frankfurt, Germany
| | - Priscilla Brun
- Disposition Safety and Animal Research, Sanofi Research and Development, Montpellier, France
| | - Jean Alié
- Analytical Sciences, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Brigitte Illel
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Laurent Hortala
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Rachel Vogel
- Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Montpellier, France
| | - Didier Bazile
- Drug Delivery Technologies and Innovation, Pharmaceutical Sciences Operations, Lead Generation and Candidate Realization, Sanofi Research and Development, Vitry-sur-Seine, France.
| |
Collapse
|
9
|
Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur J Pharm Biopharm 2015; 97:223-9. [DOI: 10.1016/j.ejpb.2015.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
|
10
|
Ansari M. Oral Delivery of Insulin for Treatment of Diabetes: Classical Challenges and Current Opportunities. JOURNAL OF MEDICAL SCIENCES 2015. [DOI: 10.3923/jms.2015.209.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv 2015; 33:1342-54. [PMID: 25728065 DOI: 10.1016/j.biotechadv.2015.02.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a high prevalence and one of the most severe and lethal diseases in the world. Insulin is commonly used to treat diabetes in order to give patients a better life condition. However, due to bioavailability problems, the most common route of insulin administration is the subcutaneous route, which may present patients compliance problems to treatment. The oral administration is thus considered the most convenient alternative to deliver insulin, but it faces important challenges. The low stability of insulin in the gastrointestinal tract and low intestinal permeation, are problems to overcome. Therefore, the encapsulation of insulin into polymer-based nanoparticles is presented as a good strategy to improve insulin oral bioavailability. In the last years, different strategies and polymers have been used to encapsulate insulin and deliver it orally. Polymers with distinct properties from natural or synthetic sources have been used to achieve this aim, and among them may be found chitosan, dextran, alginate, poly(γ-glutamic acid), hyaluronic acid, poly(lactic acid), poly(lactide-co-glycolic acid), polycaprolactone (PCL), acrylic polymers and polyallylamine. Promising studies have been developed and positive results were obtained, but there is not a polymeric-based nanoparticle system to deliver insulin orally available in the market yet. There is also a lack of long term toxicity studies about the safety of the developed carriers. Thus, the aims of this review are first to provide a deep understanding on the oral delivery of insulin and the possible routes for its uptake, and then to overview the evolution of this field in the last years of research of insulin-loaded polymer-based nanoparticles in the academic and industrial fields. Toxicity concerns of the discussed nanocarriers are also addressed.
Collapse
Affiliation(s)
- Pedro Fonte
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Francisca Araújo
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; ICBAS-Instituto Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Cátia Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Carla Pereira
- INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| |
Collapse
|
12
|
Hintzen F, Perera G, Hauptstein S, Müller C, Laffleur F, Bernkop-Schnürch A. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int J Pharm 2014; 472:20-6. [DOI: 10.1016/j.ijpharm.2014.05.047] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
13
|
Månsson R, Frenning G, Malmsten M. Factors Affecting Enzymatic Degradation of Microgel-Bound Peptides. Biomacromolecules 2013; 14:2317-25. [DOI: 10.1021/bm400431f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronja Månsson
- Department
of Pharmacy, Uppsala University, P.O. Box
580, SE-751 23 Uppsala, Sweden
| | - Göran Frenning
- Department
of Pharmacy, Uppsala University, P.O. Box
580, SE-751 23 Uppsala, Sweden
| | - Martin Malmsten
- Department
of Pharmacy, Uppsala University, P.O. Box
580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|
15
|
Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Hauptstein S, Bernkop-Schnürch A. Thiomers and thiomer-based nanoparticles in protein and DNA drug delivery. Expert Opin Drug Deliv 2012; 9:1069-81. [PMID: 22703388 DOI: 10.1517/17425247.2012.697893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Thanks to advances in biotechnology, more and more highly efficient protein- and DNA-based drugs have been developed. Unfortunately, these kinds of drugs underlie poor non-parental bioavailability. To overcome hindrances like low mucosal permeability and enzymatic degradation polymeric excipients are utilized as drug carrier whereat thiolated excipients showed several promising qualities in comparison to the analogical unmodified polymer. AREAS COVERED The article deals with the comparatively easy modification of well-established polymers like chitosan or poly(acrylates) to synthesize thiomers. Further, the recently developed "next generation" thiomers e.g. preactivated or S-protected thiomers are introduced. Designative properties like mucoadhesion, uptake and permeation enhancement, efflux pump inhibition and protection against enzymatic degradation will be discussed and differences between first and next generation thiomers will be pointed out. Additionally, nanoparticles prepared with thiomers will be dealt with regarding to protein and DNA drug delivery as thiomers seem to be a promising approach to avoid parenteral application. EXPERT OPINION Properties of thiomers per se and results of in vivo studies carried out so far for peptide and DNA drugs demonstrate their potential as multifunctional excipients. However, further investigations and optimizations have to be done before establishing a carrier system ready for clinical approval.
Collapse
Affiliation(s)
- Sabine Hauptstein
- University of Innsbruck, Institute of Pharmacy, Department of Pharmaceutical Technology, Innrain 80/82, 6020 Innsbruck, Austria
| | | |
Collapse
|
17
|
Abstract
In spite of the numerous barriers inherent in the oral delivery of therapeutically active proteins, research into the development of functional protein-delivery systems is still intense. The effectiveness of such oral protein-delivery systems depend on their ability to protect the incorporated protein from proteolytic degradation in the GI tract and enhance its intestinal absorption without significantly compromising the bioactivity of the protein. Among these delivery systems are polyelectrolyte complexes (PECs) which are composed of polyelectrolyte polymers complexed with a protein via coulombic and other interactions. This review will focus on the current status of PECs with a particular emphasis on the potential and limitations of multi- or inter-polymer PECs used to facilitate oral protein delivery.
Collapse
|
18
|
Aberturas MR, Hernán Pérez de la Ossa D, Gil ME, Ligresti A, Ligresti L, De Petrocellis L, Torres AI, Di Marzo V, Molpeceres J. Anandamide-loaded nanoparticles: preparation and characterization. J Microencapsul 2011; 28:200-10. [PMID: 21425945 DOI: 10.3109/02652048.2010.546436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Preparation and characterization of anandamide (N-arachidonoyl-ethanolamine, AEA) loaded polycaprolactone nanoparticles (PCL NP) as a research tool to clarify the presence of an AEA transporter in cell membranes and to avoid AEA plastic adsorption and instability. MATERIALS AND METHODS High performance liquid chromatography and light scattering were used to determine encapsulation efficiency, particle size, drug release, permeability and stability. RESULTS A high encapsulation efficiency 96.05 ± 1.77% and a particle size of 83.52 ± 21.38 nm were obtained. Nearly 40% of AEA remained in the NP after a 99.9% dilution and only 50% was released after 24 h at 37 °C with a 99% dilution. PCL NP prevented the adsorption of the drug to polypropylene or polystyrene, but not to acrylic multiwell plates. Drug permeability through artificial membranes was low (10⁻⁷ to 10⁻⁸ cm/s) and was affected by the presence of NP. NP increased AEA stability in suspension (drug half-life 431 h vs. 12 h) and freeze-dried with 5% sucrose. CONCLUSION This article presents the first study where stable AEA-loaded NP with high encapsulation efficiencies have been obtained.
Collapse
Affiliation(s)
- M R Aberturas
- Department of Pharmacy and Pharmaceutical Technology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Llabot JM, Salman H, Millotti G, Bernkop-Schnürch A, Allemandi D, Manuel Irache J. Bioadhesive properties of poly(anhydride) nanoparticles coated with different molecular weights chitosan. J Microencapsul 2011; 28:455-63. [DOI: 10.3109/02652048.2011.576787] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Iqbal J, Vigl C, Moser G, Gasteiger M, Perera G, Bernkop-Schnürch A. Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid. Drug Deliv 2011; 18:432-40. [DOI: 10.3109/10717544.2011.577108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv 2010; 7:37-48. [PMID: 20017659 DOI: 10.1517/17425240903338055] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE OF THE FIELD Several strategies are being investigated for the prevention of heterosexual transmission of HIV. Of these, topical vaginal drug delivery systems, microbicides, are being actively pursued. HIV prevention by means of a topical microbicide has several drug delivery challenges. These challenges include the vaginal mucosal barriers and potential degradation of the drugs in the vaginal lumen due to pH and enzymes present. Also, new drugs being evaluated as microbicides have specific mechanisms of action, which in some cases require drug targeting to a specific site of action. Nanoparticles provide a delivery strategy for targeted or controlled delivery to the vagina which can be applied in the field of HIV prevention. AREAS COVERED IN THE REVIEW This review summarizes nanoparticulate systems and their use in mucosal delivery to date. The sexual transmission of HIV along with the various targets to prevent transmission are discussed as well as the potential opportunities, challenges and advantages in using a nanoparticle-based approach for microbicidal drug delivery. WHAT THE READER WILL GAIN This review provides a general understanding of vaginal drug delivery, its challenges, and nanoparticulate delivery systems. Additionally, insight will be gained as to the limited existing application of this technology to the field of HIV prevention. TAKE HOME MESSAGE To date, few studies have been published that exploit nanoparticle-based microbicidal delivery to the vagina. The use of nanoparticles for vaginal drug delivery provides an approach to overcome the existing barriers to success.
Collapse
Affiliation(s)
- Rama Mallipeddi
- Magee Women's Research Institute, 204 Craft Avenue, B509, Pittsburgh, PA 15213, USA
| | | |
Collapse
|