1
|
You H, Dong M. Identification of Immuno-Inflammation-Related Biomarkers for Acute Myocardial Infarction Based on Bioinformatics. J Inflamm Res 2023; 16:3283-3302. [PMID: 37576155 PMCID: PMC10417757 DOI: 10.2147/jir.s421196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Previous studies have confirmed that inflammation and immunity are involved in the pathogenesis of acute myocardial infarction (AMI). However, only few related genes are identified as biomarkers for the diagnosis and treatment of AMI. Patients and Methods GSE48060 and GSE60993 datasets were retrieved from Gene Expression Omnibus. The differentially expressed immuno-inflammation-related genes (DEIIRGs) were obtained from GSE48060, and the biomarkers for AMI were screened and validated using the "Neuralnet" package and GSE60993 dataset. Further, the biomarker-based nomogram was constructed, and miRNAs, transcription factors (TFs), and potential drugs targeting the biomarkers were explored. Furthermore, immune infiltration analysis was analyzed in AMI. Finally, the biomarkers were verified by assessing their mRNA levels using real-time quantitative PCR (RT-qPCR). Results First, eight biomarkers were screened via bioinformatics, and the artificial neural network model indicated a higher prediction accuracy for AMI even in the validation dataset. Nomogram had accurate forecasting ability for AMI as well. The TFs GTF2I, PHOX2B, RUNX1, and FOS targeting hsa-miR-1297 could regulate the expressions of ADM and CBLB, and RORA could effectively interact with melatonin and citalopram. RT-qPCR results for ADM, PI3, MMP9, NRG1 and CBLB were consistent with those of bioinformatic analysis. Conclusion In conclusion, eight key immuno-inflammation-related genes, namely, SH2D1B, ADM, PI3, MMP9, NRG1, CBLB, RORA, and FASLG, may serve as the potential biomarkers for AMI, in which the downregulation of CBLB and upregulation of ADM, PI3, and NRG1 in AMI was detected for the first time, providing a new strategy for the diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, People’s Republic of China
| |
Collapse
|
2
|
Klegerman ME, Moody MR, Huang SL, Peng T, Laing ST, Govindarajan V, Danila D, Tahanan A, Rahbar MH, Vela D, Genstler C, Haworth KJ, Holland CK, McPherson DD, Kee PH. Demonstration of ultrasound-mediated therapeutic delivery of fibrin-targeted pioglitazone-loaded echogenic liposomes into the arterial bed for attenuation of peri-stent restenosis. J Drug Target 2023; 31:109-118. [PMID: 35938912 DOI: 10.1080/1061186x.2022.2110251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
Abstract
Peri-stent restenosis following stent implantation is a major clinical problem. We have previously demonstrated that ultrasound-facilitated liposomal delivery of pioglitazone (PGN) to the arterial wall attenuated in-stent restenosis. To evaluate ultrasound mediated arterial delivery, in Yucatan miniswine, balloon inflations were performed in the carotid and subclavian arteries to simulate stent implantation and induce fibrin formation. The fibrin-binding peptide, GPRPPGGGC, was conjugated to echogenic liposomes (ELIP) containing dinitrophenyl-L-alanine-labelled pioglitazone (DNP-PGN) for targeting purposes. After pre-treating the arteries with nitroglycerine, fibrin-binding peptide-conjugated PGN-loaded ELIP (PAFb-DNP-PGN-ELIP also termed atheroglitatide) were delivered to the injured arteries via an endovascular catheter with an ultrasound core, either with or without ultrasound application (EKOSTM Endovascular System, Boston Scientific). In arteries treated with atheroglitatide, there was substantial delivery of PGN into the superficial layers (5 µm from the lumen) of the arteries with and without ultrasound, [(1951.17 relative fluorescence units (RFU) vs. 1901.17 RFU; P-value = 0.939)]. With ultrasound activation there was increased penetration of PGN into the deeper arterial layers (up to 35 µm from the lumen) [(13195.25 RFU vs. 7681.00 RFU; P-value = 0.005)]. These pre-clinical data demonstrate ultrasound mediated therapeutic vascular delivery to deeper layers of the injured arterial wall. This model has the potential to reduce peri- stent restenosis.
Collapse
Affiliation(s)
- Melvin E Klegerman
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melanie R Moody
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan T Laing
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vijay Govindarajan
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Delia Danila
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amirali Tahanan
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohammad H Rahbar
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Department, Texas Heart Institute, Houston, TX, USA
| | | | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - David D McPherson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick H Kee
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Mukhopadhyay D, Sano C, AlSawaftah N, El-Awady R, Husseini GA, Paul V. Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review. Recent Pat Anticancer Drug Discov 2021; 16:498-520. [PMID: 34911412 DOI: 10.2174/1574892816666210706155110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Existing cancer treatment methods have many undesirable side effects that greatly reduce the quality of life of cancer patients. OBJECTIVE This review will focus on the use of ultrasound-responsive liposomes and polymeric micelles in cancer therapy. METHODS This review presents a survey of the literature regarding ultrasound-triggered micelles and liposomes using articles recently published in various journals, as well as some new patents in this field. RESULTS Nanoparticles have proven promising as cancer theranostic tools. Nanoparticles are selective in nature, have reduced toxicity, and controllable drug release patterns making them ideal carriers for anticancer drugs. Numerous nanocarriers have been designed to combat malignancies, including liposomes, micelles, dendrimers, solid nanoparticles, quantum dots, gold nanoparticles, and, more recently, metal-organic frameworks. The temporal and spatial release of therapeutic agents from these nanostructures can be controlled using internal and external triggers, including pH, enzymes, redox, temperature, magnetic and electromagnetic waves, and ultrasound. Ultrasound is an attractive modality because it is non-invasive, can be focused on the diseased site, and has a synergistic effect with anticancer drugs. CONCLUSION The functionalization of micellar and liposomal surfaces with targeting moieties and the use of ultrasound as a triggering mechanism can help improve the selectivity and enable the spatiotemporal control of drug release from nanocarriers.
Collapse
Affiliation(s)
- Debasmita Mukhopadhyay
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nour AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
5
|
Papagiannaki C, Yardin C, Iosif C, Couquet C, Clarençon F, Mounayer C. Intra-arterial in-situ bevacizumab injection effect on angiogenesis. Results on a swine angiogenesis model. J Neuroradiol 2020; 48:299-304. [PMID: 32184118 DOI: 10.1016/j.neurad.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE In this study we tested the effect of antiangiogenics on a swine angiogenesis model that shares some brain AVM histological characteristics. The objective was to determine bevacizumab effects on retia volumes and on vessels' wall. MATERIALS AND METHODS Fifteen pigs were divided into 3 groups: Five animals served as controls (group A), 5 animals underwent endovascular left external and common carotid artery occlusion (group B) and 5 animals underwent the same procedure and had an intra-arterial in-situ injection of bevacizumab (groupC) 2 months after the occlusion. A DSA associated with 3D-rotational angiography was performed at day 0 and at 3 months in all groups in order to measure rete mirabile volumes. The animals were sacrificed at 3 months and the retia were harvested for pathological and immunohistochemistry examinations. RESULTS All VEGF-A receptors were blocked at the site of injection and there was a local enhanced endothelial proliferation and apoptosis. The volume of the retia remained unchanged after the bevacizumab injection. Retia vessels presented comparable media thickness, higher endothelial proliferation and apoptosis after the anti-VEGF injection. CONCLUSION A single in-situ injection of bevacizumab in this swine angiogenesis model showed no change in retia volume and an extensive blockage of VEGF receptors at the site of injection one month later. Rete mirabile vessels presented comparable media thickness, higher endothelial proliferation and apoptosis after the anti-VEGF injection, suggesting that bevacizumab antiangiogenic effect does not fragilize vessel wall. More studies are needed to confirm these preliminary insights of in-situ antiangiogenic effect on vascular malformations.
Collapse
Affiliation(s)
- Chrysanthi Papagiannaki
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Department of Interventional Neuroradiology, CHU Rouen, Rouen, France.
| | - Catherine Yardin
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Department of Cytology, Histology and Biology, CHU Limoges, Limoges, France
| | - Christina Iosif
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Department of Interventional Neuroradioligy, Erasmus University Hospital, ULB University, Brussels, Belgium
| | - Claude Couquet
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Haute Vienne Departmental Laboratory for research and analysis, Limoges, France
| | - Frederic Clarençon
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Department of Neurorradiology, Pitié Salpetrière Hospital, Paris, France
| | - Charbel Mounayer
- CNRS, XLIM, UMR 7252, University of Limoges, 87000 Limoges, France; Department of Neuroradiology, CHU Limoges, Limoges, France
| |
Collapse
|
6
|
Kumar KN, Mallik S, Sarkar K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3670. [PMID: 29289081 PMCID: PMC5736393 DOI: 10.1121/1.5017607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 05/18/2023]
Abstract
Echogenic liposomes (ELIPs) are an excellent candidate for ultrasound activated therapeutics and imaging. Although multiple experiments have established their echogenicity, the underlying mechanism has remained unknown. However, freeze-drying in the presence of mannitol during ELIP preparation has proved critical to ensuring echogenicity. Here, the role of this key component in the preparation protocol was investigated by measuring scattering from freshly prepared freeze-dried aqueous solution of mannitol-and a number of other excipients commonly used in lyophilization-directly dispersed in water without any lipids in the experiment. Mannitol, meso-erythritol, glycine, and glucose that form a highly porous crystalline phase upon freeze-drying generated bubbles resulting in strong echoes during their dissolution. On the other hand, sucrose, trehalose, and xylitol, which become glassy while freeze-dried, did not. Freeze-dried mannitol and other crystalline substances, if thawed before being introduced into the scattering volume, did not produce echogenicity, as they lost their crystallinity in the thawed state. The echogenicity disappeared in a degassed environment. Higher amounts of sugar in the original aqueous solution before freeze-drying resulted in higher echogenicity because of the stronger supersaturation and crystallinity. The bubbles created by the freeze-dried mannitol in the ELIP formulation play a critical role in making ELIPs echogenic.
Collapse
Affiliation(s)
- Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
7
|
Razpotnik R, Novak N, Čurin Šerbec V, Rajcevic U. Targeting Malignant Brain Tumors with Antibodies. Front Immunol 2017; 8:1181. [PMID: 28993773 PMCID: PMC5622144 DOI: 10.3389/fimmu.2017.01181] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the antibody to bind to the specific target(s). Finally, the current clinical trials are reviewed, showing the most recent progress of attractive approaches to deliver therapeutic antibodies across the BBB aiming at the specific antigen.
Collapse
Affiliation(s)
- Rok Razpotnik
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Neža Novak
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Uros Rajcevic
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|