1
|
Arafa ESA, Abdel-Fattah MM, Hassanein EHM, Buabeid MA, Mohamed WR. Involvement of GSK-3β, NF-κB, PPARγ, and apoptosis in amlodipine's anticancer effect in BALB/c mice. Toxicol Appl Pharmacol 2025; 498:117298. [PMID: 40089189 DOI: 10.1016/j.taap.2025.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Lung cancer is the primary cause of death due to cancer all over the world despite the decrease in the mortality rates from cancer in general. While chemotherapy is a commonly employed treatment for lung cancer, its efficacy is limited due to poor tissue selectivity, inadequate delivery to tumor sites, and associated side effects. The present work aims to assess the potential anti-cancer effectiveness of amlodipine, a calcium channel blocker, on murine lung cancer via modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Lung cancer was induced in BALB/c mice by intraperitoneal injection of 1.5 g/kg in two doses of urethane: once on the 1st and the second on the 60th day of the experiment. Amlodipine was administered orally at a dose of 10 mg/kg/day for the last 28 days of experiment. Relative to urethane group, amlodipine mitigated urethane-induced histopathological abnormalities. It restored oxidant/antioxidant balance by normalizing MDA, GSH, and SOD. Furthermore, it exerted a marked anti-inflammatory effect through downregulating lung MPO, ICAM-1, IL-6, TNF-α, and NF-қB expressions. Amlodipine enhanced apoptosis of cancer cells as evidenced by increasing Bax and decreasing Bcl-2 expression. The anticancer effect of amlodipine was suggested to be mediated through increasing PPARγ and reducing GSK3β and p-GSK3β signaling. Collectively, these results suggest that amlodipine could exert a promising anticancer effect against lung cancer through modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Our findings could be highly significant in clinical settings, offering a valuable adjuvant option for managing lung carcinoma, particularly in patients with cardiovascular disorders.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Malak MN, Arafa EA, Abdel-Fattah MM, Khalaf MM, Arab HH, Hamzawy MA. Targeting EGFR/PI3K/AKT/mTOR and Bax/Bcl-2/caspase3 pathways with ivermectin mediates its anticancer effects against urethane-induced non-small cell lung cancer in BALB/c mice. Tissue Cell 2025; 95:102873. [PMID: 40174264 DOI: 10.1016/j.tice.2025.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 04/04/2025]
Abstract
Lung cancer's mortality is among the highest compared to other cancers globally. However, a recent study has shown that ivermectin, an antiparasitic drug, may have a promising anticancer effect on lung cancer. The present study aimed to investigate the impact of ivermectin on EGFR.3/PI3K4/AKT5/mTOR6 signaling pathway in NSCLC.7 Mice were divided into four groups; (1) normal; (2) oral ivermectin alone (5 mg/kg) daily; (3) NSCLC was induced by urethane (1.5 g/kg, i.p.) at days one and sixty; (4) NSCLC group treated with ivermectin. The effect of ivermectin on macroscopic, microscopic, and lung index was assessed. The antitumor and antiproliferative effects of ivermectin were investigated by CYFRA 21-1 level and Ki-67, respectively. IHC determined the molecular expression of EGFR8, while phosphorylated PI3K, AKT, and mTOR were quantified by Western blotting assay. ELISA assay of active caspase 3, Bcl-29, and BAX10 was used to assess the apoptotic effect of ivermectin. Finally, VEGF11 lung content was measured. Findings showed that ivermectin improved macro and microscopic pathological changes. Ivermectin induced cytotoxic effect as indicated by CYFRA 21-1 suppression besides enhancing BAX/Bcl-2 ratio and active caspase 3. The immunoexpression of Ki-67 and EGFR declined. Ivermectin remarkably reduced p-PI3K, p-AKT, p-mTOR, and VEGF expressions. Overall, the study proposes ivermectin as a promising drug for lung cancer through its orchestral regulation of EGFR/PI3K/AKT/mTOR/VEGF signaling.
Collapse
Affiliation(s)
- Marina N Malak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Elshaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohamed A Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
3
|
Khalaf MM, Malak MN, Alsahli TG, Althobaiti M, Hamzawy MA, Abdel-Fattah MM. Repurposing bosentan as an anticancer agent: EGFR/ERK/c-Jun modulation inhibits NSCLC tumor growth. Fundam Clin Pharmacol 2025; 39:e13052. [PMID: 39801131 DOI: 10.1111/fcp.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 05/02/2025]
Abstract
Drug repurposing of well-established drugs to be targeted against lung cancer has been a promising strategy. Bosentan is an endothelin 1 (ET-1) blocker widely used in pulmonary hypertension. The current experiment intends to inspect the anticancer and antiangiogenic mechanism of bosentan targeting epidermal growth factor receptor (EGFR) /extra-cellular Signal Regulated Kinase (ERK) /c-Jun/vascular endothelial growth factor (VEGF) carcinogenic pathway. BALB/c mice were randomized into four groups, the first received the vehicle, the second received 100 mg/kg oral bosentan alone, the third has non-small cell lung cancer (NSCLC) induced by two doses of 1.5 g/kg urethane i.p. and finally the fourth has NSCLC received bosentan. To determine the anti-proliferative impact of bosentan, cytokeratin 19 fragments (CYFRA 21-1) level was assessed, and Ki-67 positive cells were counted by immunohistochemical (IHC). Molecular expression of EGFR via IHC, relative expression of p-ERK1/2 and p-c-Jun via western blotting and caspase 3, Bcl-2 Associated X-protein (BAX)/B-cell lymphoma 2 (Bcl-2) ratio and VEGF via ELISA were quantified. Bosentan showed pronounced improvement in lung index and histopathological examinations. Bosentan exerted a noticeable arrest of lung cancer growth indicated by the attenuation of CYFRA 21-1 and Ki-67 positive cell counts besides the boost of BAX/Bcl-2 ratio and caspase 3. Bosentan induced a remarkable decline of EGFR, T-ERK1/2/p-ERK1/2, T-c-Jun/p-c-Jun, and VEGF. Bosentan induced cytotoxic and anti-angiogenic impact through regulation of EGFR/ERK/c-Jun/VEGF axis suggesting its potential therapeutic impact against lung cancer.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Marina N Malak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Tariq G Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Musaad Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohamed A Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
4
|
Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res 2024; 34:316-334. [PMID: 37814217 DOI: 10.1080/08982104.2023.2268710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.
Collapse
Affiliation(s)
- Yeliz Fidan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Stela Muçaj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK;
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
6
|
Gakis GP, Aviziotis IG, Charitidis CA. A structure-activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials. NANOSCALE 2023; 15:16432-16446. [PMID: 37791566 DOI: 10.1039/d3nr03174h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The increase of human and environmental exposure to engineered nanomaterials (ENMs) due to the emergence of nanotechnology has raised concerns over their safety. The challenging nature of in vivo and in vitro toxicity assessment methods for ENMs, has led to emerging in silico techniques for ENM toxicity assessment, such as structure-activity relationship (SAR) models. Although such approaches have been extensively developed for the case of single-component nanomaterials, the case of multicomponent nanomaterials (MCNMs) has not been thoroughly addressed. In this paper, we present a SAR approach for the case metal and metal oxide MCNMs. The developed SAR framework is built using a dataset of 796 individual toxicity measurements for 340 different MCNMs, towards human cells, mammalian cells, and bacteria. The novelty of the approach lies in the multicomponent nature of the nanomaterials, as well as the size, diversity and heterogeneous nature of the dataset used. Furthermore, the approach used to calculate descriptors for surface loaded MCNMs, and the mechanistic insight provided by the model results can assist the understanding of MCNM toxicity. The developed models are able to correctly predict the toxic class of the MCNMs in the heterogeneous dataset, towards a wide range of human cells, mammalian cells and bacteria. Using the abovementioned approach, the principal toxicity pathways and mechanisms are identified, allowing a more holistic understanding of metal oxide MCNM toxicity.
Collapse
Affiliation(s)
- G P Gakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| | - I G Aviziotis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| | - C A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| |
Collapse
|
7
|
Abdel-Fattah MM, Mohamed WR, Hassanein EHM, Arab HA, Arafa ESA. Role of NF-κB/ICAM-1, JAK/STAT-3, and apoptosis signaling in the anticancer effect of tangeretin against urethane-induced lung cancer in BALB/c mice. Life Sci 2023; 325:121749. [PMID: 37142089 DOI: 10.1016/j.lfs.2023.121749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Lung carcinoma is one of the most prevalent and deadly neoplasia worldwide. Numerous synthetic medications have been used in the treatment of cancer. However, there are several drawbacks, such as side effects and inefficiency. The current study focused on the potential anti-cancer effectiveness of tangeretin, an antioxidant flavonoid, on lung cancer induced experimentally in BALB/c mice and explored the involvement of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling in its anti-cancer effect. BALB/c mice were injected with urethane (1.5 mg/kg) twice; on the first day and on the 60th day of the experiment, then treated with 200 mg/kg tangeretin orally once daily for the last 4 weeks of the experiment. Compared with urethane group, tangeretin normalized oxidative stress markers; MDA, GSH, and SOD activity. Moreover, it had an anti-inflammatory effect by decreasing lung MPO activity, ICAM-1, IL-6, NF-қB, and TNF-α expressions. Interestingly, tangeretin decreased cancer metastasis by reducing p-JAK, JAK, p-STAT-3, and STAT-3 protein expression levels. Furthermore, it increased the apoptotic marker, caspase-3, indicating enhanced apoptosis of cancer cells. Finally, histopathology confirmed the anti-cancer effect of tangeretin. In conclusion, tangeretin could have a promising effect in counteracting lung cancer via modulation of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hany A Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - El-Shaimaa A Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
8
|
Gakis GP, Krikas A, Neofytou P, Tran L, Charitidis C. Modelling the biodistribution of inhaled gold nanoparticles in rats with interspecies extrapolation to humans. Toxicol Appl Pharmacol 2022; 457:116322. [PMID: 36414120 DOI: 10.1016/j.taap.2022.116322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The increasing intentional and non-intentional exposure to nanoparticles (NPs) has raised the interest concerning their fate and biodistribution in the body of animals and humans after inhalation. In this context, Physiologically Based (pharmaco)Kinetic (PBK) modelling has emerged as an in silico approach that simulates the biodistribution kinetics of NPs in the body using mathematical equations. Due to restrictions in data availability, such models are first developed for rats or mice. In this work, we present the interspecies extrapolation of a PBK model initially developed for rats, in order to estimate the biodistribution of inhaled gold NPs (AuNPs) in humans. The extrapolation framework is validated by comparing the model results with experimental data from a clinical study performed on humans for inhaled AuNPs of two different sizes, namely 34 nm and 4 nm. The novelty of this work lies in the extrapolation of a PBK model for inhaled AuNPs to humans and comparison with clinical data. The extrapolated model is in good agreement with the experimental data, and provides insights for the mechanisms of inhaled AuNP translocation to the blood circulation, after inhalation. Finally, the biodistribution of the two sizes of AuNPs in the human body after 28 days post-exposure is estimated by the model and discussed.
Collapse
Affiliation(s)
- G P Gakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - A Krikas
- Thermal Hydraulics and Multiphase Flow Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - P Neofytou
- Thermal Hydraulics and Multiphase Flow Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - L Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - C Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Elkomy MH, El Menshawe SF, Kharshoum RM, Abdeltwab AM, Hussein RRS, Hamad DS, Alsalahat I, Aboud HM. Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: statistical optimization and comparative in vitro/ in vivo evaluation. Drug Deliv 2022; 29:2058-2071. [PMID: 35801404 PMCID: PMC9272939 DOI: 10.1080/10717544.2022.2092236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma represents a globally serious non-communicable ailment with significant public health outcomes for both pediatrics and adults triggering vast morbidity and fatality in critical cases. The β2-adrenoceptor agonist, terbutaline sulfate (TBN), is harnessed as a bronchodilator for monitoring asthma noising symptoms. Nevertheless, the hepatic first-pass metabolism correlated with TBN oral administration mitigates its clinical performance. Likewise, the regimens of inhaled TBN dosage forms restrict its exploitation. Consequently, this work is concerned with the assimilation of TBN into a novel non-phospholipid nanovesicular paradigm termed novasomes (NVS) for direct and effective TBN pulmonary targeting. TBN-NVS were tailored based on the thin film hydration method and Box-Behnken design was applied to statistically optimize the formulation variables. Also, the aerodynamic pattern of the optimal TBN-NVS was explored via cascade impaction. Moreover, comparative pharmacokinetic studies were conducted using a rat model. TBN elicited encapsulation efficiency as high as 70%. The optimized TBN-NVS formulation disclosed an average nano-size of 223.89 nm, ζ potential of −31.17 mV and a sustained drug release up to 24 h. Additionally, it manifested snowballed in vitro lung deposition behavior in cascade impactor with a fine particle fraction of 86.44%. In vivo histopathological studies verified safety of intratracheally-administered TBN-NVS. The pharmacokinetic studies divulged 3.88-fold accentuation in TBN bioavailability from the optimum TBN-NVS versus the oral TBN solution. Concisely, the results proposed that NVS are an auspicious nanovector for TBN pulmonary delivery with integral curbing of the disease owing to target specificity.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Shahira F El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amany M Abdeltwab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Doaa S Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
10
|
Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203706. [PMID: 36296896 PMCID: PMC9608376 DOI: 10.3390/nano12203706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Krikas A, Neofytou P, Gakis GP, Xiarchos I, Charitidis C, Tran L. Modeling of clearance, retention, and translocation of inhaled gold nanoparticles in rats. Inhal Toxicol 2022; 34:361-379. [PMID: 36053230 DOI: 10.1080/08958378.2022.2115592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: The increasing exposure to gold nanoparticles (AuNPs), due to their wide range of applications, has led to the need for thorough understanding of their biodistribution, following exposure. The objective of this paper is to develop a PBK model in order to study the clearance, retention and translocation of inhaled gold nanoparticles in rats, providing a basis for the understanding of the absorption, distribution, metabolism and elimination (ADME) mechanisms of AuNPs in various organs.Materials and methods: A rat PBK computational model was developed, connected to a detailed respiratory model, including the olfactory, tracheobronchial, and alveolar regions. This model was coupled with a Multiple Path Particle Dosimetry (MPPD) model to appropriately simulate the exposure to AuNPs. Three existing in vivo experimental datasets from scientific literature for the biodistribution of inhaled AuNPs for different AuNP sizes and exposure scenarios were utilized for model calibration and validation.Results and Discussion: The model was calibrated using two individual datasets for nose only inhaled and intratracheally instilled AuNPs, while an independent dataset for nose only inhaled AuNPs was used as external validation. The overall fitting over the three datasets was proved acceptable as shown by the relevant statistical metrics. The influence of several physiological parameters is also studied via a sensitivity analysis, providing useful insights into the mechanisms of NP pharmacokinetics. The key aspects of the inhaled AuNPs biodistribution are discussed, revealing the key mechanisms for the AuNPs absorption routes, the AuNP uptake by secondary organs and the influence of the AuNP size on the translocation from the lungs to blood circulation.Conclusions: The model results together with the model sensitivity analysis clarified the key mechanisms for the inhaled AuNPs biodistribution to secondary organs. It was observed that nose-only inhaled AuNPs of smaller size can enter the blood circulation through secondary routes, such as absorption through the gastrointestinal (GI) lumen, showing that such translocations should not be underestimated in biodistribution modelling. Finally, the computational framework presented in this study can be used as a basis for a more wide investigation of inhaled nanoparticles biodistribution, including interspecies extrapolation of the resulting PBK model for the inhalation and subsequent biodistribution of AuNPs in humans.
Collapse
Affiliation(s)
- A Krikas
- Thermal Hydraulics and Multiphase Flow Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - P Neofytou
- Thermal Hydraulics and Multiphase Flow Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - G P Gakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - I Xiarchos
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - C Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - L Tran
- Institute of Occupational Medicine, Edinburgh, UK
| |
Collapse
|
12
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
13
|
Khalaf MM, Abo-Youssef AM, Malak MN, Hamzawy MA. Novel therapeutic modalities target cell signaling of Renin-Angiotensin system/NF-κB-induced cell cycle arrest and apoptosis in urethane-induced lung cancer in mice: An in vivo study. J Biochem Mol Toxicol 2022; 36:e23162. [PMID: 35822566 DOI: 10.1002/jbt.23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lung cancer has risen to the top of the list of cancer-related deaths worldwide. Aliskiren is a direct renin inhibitor. AIM This study aims to investigate the impact of cell signaling of Renin-Angiotensin system (RAS)/NF-κB on lung cancer by investigating the potential therapeutic effects of aliskiren for lung cancer treatment in urethane-induced lung cancer in mice. METHODS Male BALB/c mice were randomly assigned to one of five treatment groups for 150 days, including (1) normal control; (2) aliskiren (25 mg/kg/i.p) daily, (3) urethane at a dose of 1.5 g/kg (i.p) at Day 1 and 60 (nonsmall cell lung cancer[NSCLC] group) (4) NSCLC mice received carboplatin (15 mg/kg/i.p) every other day for the last 4 successive weeks and (5) NSCLC mice treated with aliskiren daily. Tumor size was determined based on blood sampling, and lungs were isolated for biochemical analysis, western blot analysis assay, and histopathological examination. RESULTS Urethane demonstrated significant changes in all biochemical and molecular parameters and histological patterns. Aliskiren-treated mice had significantly lower levels of NF-κB p65, Bcl-2, cyclin D1, ICAM-1, MMP-2, and Nrf2, with an increase in the catalytic activity of caspase-3 due to its RAS inhibitory mechanism. The combined urethane administration with aliskiren demonstrated a significant improvement in the histopathological examination. CONCLUSION RAS/NF-B cell signaling is a potential therapeutic target for preventing and treating lung adenocarcinoma, evidenced by the fundamental cytotoxic mechanism and attenuation of metastasis and angiogenesis induced by the treatment of NSCLC mice with aliskiren.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina N Malak
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
14
|
Torabi M, Yaghoobi F, Shervedani RK, Kefayat A, Ghahremani F, Harsini PR. Mn(II) & Gd(III) Deferrioxamine Complex Contrast Agents & Temozolomide Cancer Prodrug Immobilized on Folic Acid Targeted Graphene/Polyacrylic Acid Nanocarrier: MRI Efficiency, Drug Stability & Interactions with Cancer Cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
El-Gogary RI, Nasr M, Rahsed LA, Hamzawy MA. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci 2022; 298:120500. [PMID: 35341825 DOI: 10.1016/j.lfs.2022.120500] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
AIMS Ferulic acid is a polyphenolic compound with proven anticancer properties, but it suffers from low solubility and bioavailability. In the current work, polymeric and lipidic nanocapsules of ferulic acid were prepared, characterized, and tested on colorectal cancer (CRC) cell lines (HCT-116 and Caco2 cells), with mechanistic anticancer elucidation using flow cytometry. The selected NCs formulation was further tested in vivo on rats after inducing CRC using 1,2 dimethylhydrazine (DMH), followed by biochemical analysis, molecular and histological examinations. KEY FINDINGS Results revealed that both polymeric and lipidic nanocapsules showed favorable properties, but the latter was smaller in size and presented higher cumulative percent released of FA. The lipidic nanocapsules displayed better anticancer activity than the drug on both cell lines; with apoptosis being the dominant cell death mode. The in vivo study revealed that ferulic acid lipid NCs exhibited significant antioxidant and anti-inflammatory activities. They also downregulated cyclin D1, IGF II, and VEGF, and autoregulated the apoptotic/anti-apoptotic gene BAX/Bcl-2; indicating their apoptotic and anti-angiogenic potential, which was further confirmed by histological examination. SIGNIFICANCE Findings prove that the proposed ferulic acid lipid nanocapsules are an ideal system for treatment of CRC, and can serve as a preventive measure against metastasis.
Collapse
Affiliation(s)
- Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Laila A Rahsed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
16
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
17
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|
18
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
19
|
Kumbhar P, Manjappa A, Shah R, Jha NK, Singh SK, Dua K, Disouza J, Patravale V. Inhalation delivery of repurposed drugs for lung cancer: Approaches, benefits and challenges. J Control Release 2021; 341:1-15. [PMID: 34780880 DOI: 10.1016/j.jconrel.2021.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer (LC) is one of the leading causes of mortality accounting for almost 25% of cancer deaths throughout the world. The shortfall of affordable and effective first-line chemotherapeutics, the existence of resistant tumors, and the non-optimal route of administration contribute to poor prognosis and high mortality in LC. Administration of repurposed non-oncology drugs (RNODs) loaded in nanocarriers (NCs) via inhalation may prove as an effective alternative strategy to treat LC. Furthermore, their site-specific release through inhalation route using an appropriate inhalation device would offer improved therapeutic efficacy, thereby reducing mortality and improving patients' quality of life. The current manuscript offers a comprehensive overview on use of RNODs in LC treatment with an emphasis on their inhalation delivery and the associated challenges. The role of NCs to improve lung deposition and targeting of RNODs via inhalation are also elaborated. In addition, information about various RNODs in clinical trials for the treatment of LC, possibility for repurposing phytoceuticals against LC via inhalation and the bottlenecks associated with repurposing RNODs against cancer are also highlighted. Based on the reported studies covered in this manuscript, it was understood that delivery of RNODs via inhalation has emerged as a propitious approach. Hence, it is anticipated to provide effective first-line treatment at an affordable cost in debilitating LC from low and middle-income countries (LMIC).
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India
| | - Rohit Shah
- Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra 416416, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia..
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| |
Collapse
|
20
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
21
|
The Effect of Vanadium Inhalation on the Tumor Progression of Urethane-Induced Lung Adenomas in a Mice Model. INORGANICS 2021. [DOI: 10.3390/inorganics9110078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer has the highest death rates. Aerosol drug delivery has been used for other lung diseases. The use of inhaled vanadium (V) as an option for lung cancer treatment is explored. Four groups of mice were studied: (1) Saline inhalation alone, (2) Single intraperitoneal (i.p.) dose of urethane, (3) V nebulization twice a week (Wk) for 8 Wk, and (4) A single dose of urethane and V nebulization for 8 Wk. Mice were sacrificed at the end of the experiment. Number and size of tumors, PCNA (proliferating cell nuclear antigen) and TUNEL (terminal deoxynucleotidyl tranferase dUTP nick-end labeling) immunohistochemistry were evaluated and compared within groups. Results: The size and number of tumors decreased in mice exposed to V-urethane and the TUNEL increased in this group; differences in the PCNA were not observed. Conclusions: Aerosol V delivery increased apoptosis and possibly the growth arrest of the tumors with no respiratory clinical changes in the mice.
Collapse
|
22
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
23
|
Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv 2021; 28:1995-2010. [PMID: 34569401 PMCID: PMC8477964 DOI: 10.1080/10717544.2021.1981492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the second most common and lethal cancer in the world. Chemotherapy is the preferred treatment modality for lung cancer and prolongs patient survival by effective controlling of tumor growth. However, owing to the nonspecific delivery of anticancer drugs, systemic chemotherapy has limited clinical efficacy and significant systemic adverse effects. Inhalation routes, on the other hand, allow for direct delivery of drugs to the lungs in high local concentrations, enhancing their anti-tumor activity with minimum side effects. Preliminary research studies have shown that inhaled chemotherapy may be tolerated with manageable adverse effects such as bronchospasm and cough. Enhancing the anticancer drugs deposition in tumor cells and limiting their distribution to other healthy cells will therefore increase their clinical efficacy and decrease their local and systemic toxicities. Because of the controlled release and localization of tumors, nanoparticle formulations are a viable option for the delivery of chemotherapeutics to lung cancers via inhalation. The respiratory tract physiology and lung clearance mechanisms are the key barriers to the effective deposition and preservation of inhaled nanoparticle formulations in the lungs. Designing and creating smart nanoformulations to optimize lung deposition, minimize pulmonary clearance, and improve cancerous tissue targeting have been the subject of recent research studies. This review focuses on recent examples of work in this area, along with the opportunities and challenges for the pulmonary delivery of smart nanoformulations to treat lung cancers.
Collapse
Affiliation(s)
- Xian-Yan Yu
- Department of Respiratory Medicine, Chun'an First People's Hospital, (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, PR China
| | - Xue Jin
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China
| | - Zhang-Xuan Shou
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
24
|
Maldonado-Ortega DA, Navarro-Tovar G, Martínez-Castañón G, Gonzalez C. Effect of gold nanoparticles (AuNPs) on isolated rat tracheal segments. Toxicol Rep 2021; 8:1412-1418. [PMID: 34345594 PMCID: PMC8319458 DOI: 10.1016/j.toxrep.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
AuNPs at 100 μg/mL induce a contractile effect on isolated trachea rings of female and male rats. Nitric oxide (NO) is a potential mediator of the AuNPs actions upon the smooth muscle of isolated rat tracheal rings. Formation of AuNPs in physiological solution in controls with HAuCl4 trigger similar contractile effects than AuNPs.
The AuNPs have been used in biomedicine as therapeutic tools for cancer. However, its role in the context of respiratory physiology has been little studied. This study aimed to determine the impact of AuNPs on respiratory smooth muscle tone, using a model of isolated tracheal rings from female and male rats precontracted with acetylcholine (ACh). AuNPs exerted a contractile effect only in the concentration of 100 ug/ml. This contractile effect was not modified by gender. The possible mediator +could be nitric oxide (NO), measured in a physiological solution containing the tracheal rings treated with different concentrations of AuNPs. The results obtained in this study show that the AuNPs are bio-inert in a concentration range of 0.1−10 μg/mL; however, 100 μg/mL could trigger airway hyperresponsiveness. Similar effects were obtained in isolated trachea rings treated with 100 μg/mL HAuCl4. An evaluation of HAuCl4 in physiological buffer at various HEPES concentrations (0–20 mM) showed the formation of AuNPs that could explain the contractile effect on the tracheal smooth muscle.
Collapse
Affiliation(s)
- Daniel Alberto Maldonado-Ortega
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico.,Consejo Nacional de Ciencia y Tecnologia, Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, 03940, México City, Mexico
| | - Gabriel Martínez-Castañón
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Parque Chapultepec 1570, 78210, San Luis Potosi, SLP, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico.,Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosi, Sierra Leona 550, Lomas de San Luis, 78210, San Luis Potosi, SLP, Mexico
| |
Collapse
|
25
|
Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021; 14:725. [PMID: 34451824 PMCID: PMC8400724 DOI: 10.3390/ph14080725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
Collapse
Affiliation(s)
- Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark;
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Fadi G. Saqallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| |
Collapse
|
26
|
Abo-Zalam HB, El-Denshary ES, Abdelsalam RM, Khalil IA, Khattab MM, Hamzawy MA. Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study. Biomed Pharmacother 2021; 139:111494. [PMID: 34243595 DOI: 10.1016/j.biopha.2021.111494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
This study set out to optimize simvastatin (SV) in lipid nanoparticles (SLNs) to improve bioavailability, efficacy and alleviate adverse effects. Simvastatin-loaded solid lipid nanoparticles (SV-SLNs) were prepared by hot-melt ultrasonication method and optimized by box-Behnken experimental design. Sixty Wister albino rats were randomly assigned into six groups and treated daily for 16 weeks: control group, the group fed with 20 g of high-fat diet (HFD), group treated with vehicle (20 mg/kg, P.O.) for last four weeks, group treated with HFD and SV (20 mg/kg, P.O.) / or SV-SLNs (20 mg/kg/day, P.O.) / or SV-SLNs (5 mg/kg, P.O.) at last four weeks. Blood, liver tissues, and quadriceps muscles were collected for biochemical analysis, histological and immunohistochemical assays. The optimized SV-SLNS showed a particle-size 255.2 ± 7.7 nm, PDI 0.31 ± 0.09, Zeta-potential - 19.30 ± 3.25, and EE% 89.81 ± 2.1%. HFD showed severe changes in body weight liver functions, lipid profiles, atherogenic index (AIX), albumin, glucose, insulin level, alkaline phosphatase as well as muscle injury, oxidative stress biomarkers, and protein expression of caspase-3. Simvastatin treatment in animals feed with HFD showed a significant improvement of all tested parameters, but it was associated with hepatotoxicity, myopathy, and histological changes in quadriceps muscles. SV-SLNs exhibited a significant improvement of all biochemical, histological examinations, and immunohistochemical assays. SV-SLNs (5 mg/kg) treatment returns all measured parameters to control itself. These results represent that SV-SLNs is a promising candidate as a drug carrier for delivering SV with maximum efficacy and limited adverse reaction.
Collapse
Affiliation(s)
- Hagar B Abo-Zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, 6th of October, Giza, Egypt
| | - Ezzeldein S El-Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, New Giza University, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
27
|
Salem HF, Kharshoum RM, Awad SM, Ahmed Mostafa M, Abou-Taleb HA. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int J Nanomedicine 2021; 16:4251-4276. [PMID: 34211271 PMCID: PMC8239256 DOI: 10.2147/ijn.s301597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
AIM Retinyl palmitate (RP), the most stable vitamin A derivative, is used to treat photoaging and other skin disorders. The need to minimize the adverse effects of topical drug administration has led to an enhanced interest in loading RP on ethosomes for topical drug delivery. The aim of the current study was to prepare and compare the performance of RP decorated ethosomal hydrogel with tretinoin cream in the treatment of acne vulgaris as an approach to improve drug efficacy and decrease its side effects. METHODS RP-loaded ethosomes were prepared using the injection sonication technique. A Box-Behnken design using Design Expert® software was used for the optimization of formulation variables. Particle size, zeta potential (ZP), entrapment efficiency percent (EE%), % drug release, and permeation over 24 h of different formulations were determined. The optimal formulation was incorporated into a hydrogel. Finally, the efficacy and tolerability of the optimized RP ethosomal hydrogel were clinically evaluated for acne treatment using a split-face comparative clinical study. RESULTS The optimized ethosomal RP showed particle size of 195.8±5.45 nm, ZP of -62.1±2.85 mV, EE% of 92.63±4.33%, drug release % of 96.63±6.81%, and drug permeation % of 85.98 ±4.79%. Both the optimized RP ethosomal hydrogel and tretinoin effectively reduced all types of acne lesions (inflammatory, non-inflammatory, and total lesions). However, RP resulted in significantly lower non-inflammatory and total acne lesion count than the marketed tretinoin formulation. Besides, RP-loaded ethosomes showed significantly improved tolerability compared to marketed tretinoin with no or minimal skin irritation symptoms. CONCLUSION RP ethosomal hydrogel is considerably effective in controlling acne vulgaris with excellent skin tolerability. Therefore, it represents an interesting alternative to conventional marketed tretinoin formulation for topical acne treatment.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sara M Awad
- Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Mai Ahmed Mostafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| |
Collapse
|
28
|
AboYoussef AM, Khalaf MM, Malak MN, Hamzawy MA. Repurposing of sildenafil as antitumour; induction of cyclic guanosine monophosphate/protein kinase G pathway, caspase-dependent apoptosis and pivotal reduction of Nuclear factor kappa light chain enhancer of activated B cells in lung cancer. J Pharm Pharmacol 2021; 73:1080-1091. [PMID: 33856030 DOI: 10.1093/jpp/rgab049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Lung cancer is one of the most frequent types of cancers that lead to death. Sildenafil is a potent inhibitor of phosphodiesterase-5 and showed potential anticancer effects, which has not yet been fully evaluated. Thus, this study aims to investigate the potential anticancer effect of sildenafil in urethane-induced lung cancer in BALB/c mice. METHODS Five-week-old male BALB/c mice were treated with either (i) normal saline only, (ii) sildenafil only 50 mg kg-1/ P.O every other day for the last four successive weeks, (iii) urethane 1.5 gm kg-1 i.p (at day 1 and day 60), (iv) carboplatin after urethane induction, or (v) sildenafil after urethane induction. KEY FINDINGS It was shown that sildenafil significantly increased the levels of cGMP and Caspase-3 with a reduction of NF-κB, Bcl-2, Cyclin D1, intercellular adhesion molecule 1, matrix metalloproteinase-2 levels and normalisation of Nrf2 along with pronounced improvement in the histological patterns. CONCLUSIONS These results indicated that sildenafil markedly induces cell cycle arrest, apoptosis and inhibits the metastatic activity through activation of cyclic guanosine monophosphate/protein kinase G pathway and down-regulation of cyclin D1 and nuclear factor kappa light chain enhancer of activated B cells with downstream anti-apoptotic gene Bcl-2, which underscores the critical importance of future using sildenafil in the treatment of lung cancer.
Collapse
Affiliation(s)
- Amira M AboYoussef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina N Malak
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
29
|
Promise of gold nanomaterials as a lung cancer theranostic agent: a systematic review. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00332-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Wang W, Han Z, Guo D, Xiang Y. Renal Transcriptomics Reveals the Carcinogenic Mechanism of Ethyl Carbamate in Musalais. Onco Targets Ther 2021; 14:1401-1416. [PMID: 33658803 PMCID: PMC7920598 DOI: 10.2147/ott.s282125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Musalais is a traditional fermented wine produced in southern Xinjiang (a province of China) and is protected as a form of national intangible cultural heritage. However, ethyl carbamate (EC), which is naturally produced during the fermentation process, has been shown to induce carcinogenesis and was classified as a group 2A carcinogen by The World Health Organization's International Agency for Research on Cancer. METHODS In this work, rats were treated with musalais containing EC at varying contents (0.1, 1, or 10 mg/kg). To evaluate the toxicity of EC in musalais, the liver and kidney of the rats were subjected to transcriptomics sequencing. Differentially expressed genes (DEGs) between treated and untreated rats were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed on these genes to investigate the biological functions affected by EC in musalais. RESULTS The results demonstrated that high EC content in musalais is possibly involved in the regulation of cytochrome P450 metabolism, chemical carcinogenesis, metabolism of xenobiotics by cytochrome P450, Wnt signaling, and p53 signaling by targeting Mgst1, Gstp1, Gsta5, Gsta1, Adh1, Gsta2, and Ccnd1, thereby inducing cancer. CONCLUSION The present work predicted the potential carcinogenic mechanism of high EC content in musalais, providing a reference for its safety evaluation.
Collapse
Affiliation(s)
- Weihua Wang
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - ZhanJiang Han
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - Dongqi Guo
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| | - Yanju Xiang
- College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer City, 843300, People’s Republic of China
| |
Collapse
|
31
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
32
|
Guinart A, Perry HL, Wilton-Ely JDET, Tetley TD. Gold nanomaterials in the management of lung cancer. Emerg Top Life Sci 2020; 4:627-643. [PMID: 33270840 PMCID: PMC7752036 DOI: 10.1042/etls20200332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023]
Abstract
Lung cancer (LC) is one of the most deadly cancers worldwide, with very low survival rates, mainly due to poor management, which has barely changed in recent years. Nanomedicines, especially gold nanomaterials, with their unique and size-dependent properties offer a potential solution to many challenges in the field. The versatility afforded by the shape, size, charge and surface chemistry of gold nanostructures allows them to be adapted for many applications in the diagnosis, treatment and imaging of LC. In this review, a survey of the most recent advances in the field is presented with an emphasis on the optical properties of gold nanoscale materials and their use in cancer management. Gold nanoparticle toxicology has also been a focus of interest for many years but the studies have also sometimes arrived at contradictory conclusions. To enable extrapolation and facilitate the development of medicines based on gold nanomaterials, it must be assumed that each design will have its own unique characteristics that require evaluation before translation to the clinic. Advances in the understanding and recognition of the molecular signatures of LC have aided the development of personalised medicines. Tailoring the treatment to each case should, ideally increase the survival outcomes as well as reduce medical costs. This review seeks to present the potential of gold nanomaterials in LC management and to provide a unified view, which will be of interest to those in the field as well as researchers considering entering this highly important area of research.
Collapse
Affiliation(s)
- Ainoa Guinart
- National Heart and Lung Institute, Imperial College London, London, U.K
| | - Hannah L Perry
- Department of Chemistry, Imperial College London, London, U.K
| | | | - Teresa D Tetley
- National Heart and Lung Institute, Imperial College London, London, U.K
| |
Collapse
|
33
|
Saberinasab A, Raissi H, Hashemzadeh H. Predicting the efficiency of polyethylene glycol-functionalised graphene in delivery of temozolomide anticancer drug and investigating the effect of pH on the drug release process: DFT and free energy calculations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1845910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali Saberinasab
- Department of Chemistry, Payame Noor University, Mashhad, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran
| | | |
Collapse
|
34
|
Zhao M, Jing Z, Zhou L, Zhao H, Du Q, Sun Z. Pharmacokinetic Research Progress of Anti-tumor Drugs Targeting for Pulmonary Administration. Curr Drug Metab 2020; 21:1117-1126. [PMID: 33183196 DOI: 10.2174/1389200221999201111193910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancer is a major problem that threatens human survival and has a high mortality rate. The traditional chemotherapy methods are mainly intravenous injection and oral administration, but have obvious toxic and side effects. Anti-tumor drugs for pulmonary administration can enhance drug targeting, increase local drug concentration, and reduce the damage to systemic organs, especially for the treatment of lung cancer. METHODS The articles on the pharmacokinetics of anti-tumor drugs targeting pulmonary administration were retrieved from the Pub Med database. This article mainly took lung cancer as an example and summarized the pharmacokinetic characteristics of anti-tumor drugs targeting for pulmonary administration contained in nanoparticles, dendrimers, liposomes and micelles. RESULTS The review shows that the pharmacokinetics process of pulmonary administration is associated with a drug carrier by increasing the deposition and release of drugs in the lung, and retarding the lung clearance rate. Among them, the surface of dendrimers could be readily modified, and polymer micelles have favorable loading efficiency. In the case of inhalation administration, liposomes exhibit more excellent lung retention properties compared to other non-lipid carriers. Therefore, the appropriate drug carrier is instrumental to increase the curative effect of anti-tumor drugs and reduce the toxic effect on surrounding healthy tissues or organs. CONCLUSION In the process of pulmonary administration, the carrier-embedded antitumor drugs have the characteristics of targeted and sustained release compared with non-packaging drugs, which provides a theoretical basis for the clinical rational formulation of chemotherapy regimens. However, there is currently a lack of comparative research between drug packaging materials, and more importantly, the development of safe and effective anti-tumor drugs targeting for pulmonary administration requires more data.
Collapse
Affiliation(s)
- Mengfan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Hongyu Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan,, China
| |
Collapse
|
35
|
Islam N, Richard D. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers. Curr Cancer Drug Targets 2020; 19:162-178. [PMID: 29793407 DOI: 10.2174/1568009618666180525083451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at a low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek Richard
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.,Translational Research Institute (TRI), Brisbane, Australia
| |
Collapse
|
36
|
Gamal A, Saeed H, Sayed OM, Kharshoum RM, Salem HF. Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers. AAPS PharmSciTech 2020; 21:156. [PMID: 32449087 DOI: 10.1208/s12249-020-01705-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
Proniosomes are free-flowing systems with coating carriers, which developed as a method for improving the drug flow and pulmonary delivery. Extensive research on proniosomes was done to enhance the dry powder inhalers (DPI)'s inhalation performance. This research aimed at studying the impact of lactose-mannitol mixture additives on the proniosome's physicochemical properties as a method for improving the inhalation efficiency of DPI. Vismodegib has been employed as a compound model. Box-Behnken design has been employed to prepare different proniosomes formulae by incorporating various (A) span 60 concentrations, (B) lactose concentrations and (C) mannitol: total carrier mixture. The measured responses were vesicle size (R1), %release (R2), Carr's index (R3) and %recovery (R4). The results displayed that R1 and R4 were significantly antagonistic to C and significantly synergistic to both A and B while R2 and R3 were significantly synergistic to C and significantly antagonistic to both A and B. The optimal formula was selected for its aerodynamic behaviour, cytotoxic activity and bioavailability assessment. The optimal formula resulted in better Vismodegib lung deposition, cytotoxic activity and relative bioavailability. This novel formula could be a promising carrier for sustained delivery of drugs via the pulmonary route.
Collapse
|
37
|
Wang Q, Zhang T, Chang X, Wang K, Lee MH, Ma WY, Liu K, Dong Z. Targeting Opsin4/Melanopsin with a Novel Small Molecule Suppresses PKC/RAF/MEK/ERK Signaling and Inhibits Lung Adenocarcinoma Progression. Mol Cancer Res 2020; 18:1028-1038. [PMID: 32269074 DOI: 10.1158/1541-7786.mcr-19-1120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
The identification of oncogenic biomolecules as drug targets is an unmet need for the development of clinically effective novel anticancer therapies. In this study, we report for the first time that opsin 4/melanopsin (OPN4) plays a critical role in the pathogenesis of non-small cell lung cancer (NSCLC) and is a potential drug target. Our study has revealed that OPN4 is overexpressed in human lung cancer tissues and cells, and is inversely correlated with patient survival probability. Knocking down expression of OPN4 suppressed cells growth and induced apoptosis in lung cancer cells. We have also found that OPN4, a G protein-coupled receptor, interacted with Gα11 and triggered the PKC/BRAF/MEK/ERKs signaling pathway in lung adenocarcinoma cells. Genetic ablation of OPN4 attenuated the multiplicity and the volume of urethane-induced lung tumors in mice. Importantly, our study provides the first report of AE 51310 (1-[(2,5-dichloro-4-methoxyphenyl)sulfonyl]-3-methylpiperidine) as a small-molecule inhibitor of OPN4, suppressed the anchorage-independent growth of lung cancer cells and the growth of patient-derived xenograft tumors in mice. IMPLICATIONS: Overall, this study unveils the role of OPN4 in NSCLC and suggests that targeting OPN4 with small molecules, such as AE 51310 would be interesting to develop novel anticancer therapies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiaoyu Chang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Control of basal cell carcinoma via positively charged ethosomes of Vismodegib: In vitro and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
40
|
F AG, Sayed OM, Abo El-Ela FI, Kharshoum RM, Salem HF. Treatment of Basal Cell Carcinoma Via Binary Ethosomes of Vismodegib: In Vitro and In Vivo Studies. AAPS PharmSciTech 2020; 21:51. [PMID: 31900659 DOI: 10.1208/s12249-019-1574-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 01/18/2023] Open
Abstract
Vismodegib (VMD) is a hedgehog inhibitor which indicated for basal cell skin cancer (BCC). This work focuses on investigating the influence of isopropyl alcohol additive for topical delivering and targeting of VMD-loaded binary ethosomes for BCC treatment. Different binary ethosome formulae were prepared based on Box-Behnken design using different concentrations of phospholipid (A), cholesterol (B) and isopropyl alcohol/total alcohol ratio (C). The prepared formulae were characterized for %entrapment efficiency (R1), vesicle size (R2), %release (R3) and steady-state flux (R4). Increasing A, B and C resulted in significant increase of R1 and R2 and significant decrease of R3 and R4. The optimization was achieved and the optimum formula was selected to investigate its anti-tumour efficacy in vivo. The optimum formula showed a localized VMD and consequently a significant anti-tumour activity compared with oral VMD. Briefly, VMD-loaded binary ethosome gel could be an effective treatment of BCC with lower side effects. Graphical abstract.
Collapse
|
41
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
42
|
Kamel NM, Helmy MW, Samaha MW, Ragab D, Elzoghby AO. Multicompartmental lipid–protein nanohybrids for combined tretinoin/herbal lung cancer therapy. Nanomedicine (Lond) 2019; 14:2461-2479. [DOI: 10.2217/nnm-2019-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Multicompartmental lipid–protein nanohybrids (MLPNs) were developed for combined delivery of the anticancer drugs tretinoin (TRE) and genistein (GEN) as synergistic therapy of lung cancer. Materials & methods: The GEN-loaded lipid core was first prepared and then coated with TRE-loaded zein shell via nanoprecipitation. Results: TRE/GEN-MLPNs demonstrated a size of 154.5 nm. In situ ion pair formation between anionic TRE and the cationic stearyl amine improved the drug encapsulation with enhanced stability of MLPNs. TRE/GEN-coloaded MLPNs were more cytotoxic against A549 cancer cells compared with combined free GEN/TRE. In vivo, lung cancer bearing mice treated with TRE/GEN-MLPNs displayed higher apoptotic caspase activation compared with mice-treated free combined GEN/TRE. Conclusion: TRE/GEN-MLPNs might serve as a promising parenteral nanovehicles for lung cancer therapy.
Collapse
Affiliation(s)
- Nayra M Kamel
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Magda W Samaha
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Medicine, Division of Engineering in Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized nasal emulgel of resveratrol: preparation, optimization, in vitro evaluation and in vivo pharmacokinetic study. Drug Dev Ind Pharm 2019; 45:1624-1634. [PMID: 31353967 DOI: 10.1080/03639045.2019.1648500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nano-emulgel has become one of the most significant controlled release systems, which has the advantages of both gels and nano-emulsions. This work aims at the formulation of nasal nano-emulgel for resveratrol, employing carbopol 934 and poloxamer 407 as the gelling agents. The optimum nano-emulsion was determined through further characterization of the selected system. The nasal nano-emulgel was prepared and tested for the in vitro release, the release kinetics, FTIR, ex vivo permeation, nasal mucosa toxicity, and in vivo pharmacokinetic study. The optimum nano-emulsion consisted of Tween 20, Capryol 90, and Transcutol at a ratio of (54.26: 23.81: 21.93%v/v), and it exhibited transmittance of 100%, resveratrol solubility of 159.9 ± 6.4 mg/mL, globule size of 30.65 nm. The in vitro resveratrol released from nano-emulsion and nasal nano-emulgel was 96.17 ± 4.43% and 78.53 ± 4.7%, respectively. Ex vivo permeation was sustained during 12 h up to 63.95 ± 4.7%. The histopathological study demonstrated that the formula is safe and tolerable to the nasal mucosa. Cmax and AUC (0-∞) of resveratrol obtained after nasal administration of nasal nano-emulgel was 2.23 and 8.05 times, respectively. Similarly, Tmax was increased up to 3.67 ± 0.82 h. The optimized nasal nano-emulgel established intranasal safety and bioavailability enhancement so it is considered as a well-designed system to target the brain.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University , Beni Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University , Beni Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB) , Beni Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University (NUB) , Beni Suef , Egypt
| |
Collapse
|
44
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 2019; 27:1127-1134. [PMID: 31094230 DOI: 10.1080/1061186x.2019.1608553] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol is a promising neuroprotective agent against neurodegenerative disorders such as Alzheimer's disease. Resveratrol-loaded transferosomes and nanoemulsions were developed and labelled with gold nanoparticles (GNPs). The water maze test was utilised to identify the effect on spatial memory recovery. The treated rats were examined for cellular uptake and bioaccumulation of drug in the brain using computed tomography (CT) and histopathological examination utilising GNPs as a biomarker. Compared with nanoemulsions, transferosomes displayed higher permeation of up to 81.29 ± 2.64% and higher fluorescence intensity with p < .05. Transferosomes significantly enhanced behavioural acquisition and spatial memory function in the amnesic rats compared with both the nanoemulsion formulation and the pure drug. CT effectively demonstrated the accumulation of GNPs in the brains of all treated rats, while superior accumulation of GNPs was observed in the rats that received the transferosome formulation. The histopathology also demonstrated GNP accumulation in the nuclei and cytoplasm in the brain tissues of both the transferosome- and nanoemulsion-treated groups. Therefore, the developed transferosomes may be considered as a well-designed brain targeting system that might further be applied for targeting many drugs to be used in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| |
Collapse
|
45
|
Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 2018; 553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
|
46
|
Kreyling WG, Möller W, Holzwarth U, Hirn S, Wenk A, Schleh C, Schäffler M, Haberl N, Gibson N, Schittny JC. Age-Dependent Rat Lung Deposition Patterns of Inhaled 20 Nanometer Gold Nanoparticles and their Quantitative Biokinetics in Adult Rats. ACS NANO 2018; 12:7771-7790. [PMID: 30085651 DOI: 10.1021/acsnano.8b01826] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing use of gold nanoparticles leads to a possible increase of exposure by inhalation. Therefore, we have studied the deposition patterns of inhaled 20 nm gold nanoparticles (AuNP) in 7-90 day old rats and their biokinetics in 60 day old ones. Wistar-Kyoto rats inhaled intratracheally 20 nm 195Au-radiolabeled AuNP by negative pressure ventilation over 2 h. Immediately afterward lungs were excised, inflated and microwave dried. AuNP deposition was analyzed by single-photon emission computed tomography, computed-tomography and autoradiography. Completely balanced, quantitative biodistributions in major organs and all body tissues and total excretion were analyzed from 1 h to 28 d after inhalation. Intratracheal inhalation caused AuNP deposition predominately in the caudal lungs, independent of age. About 30% AuNP were deposited on airway epithelia and rapidly cleared by mucociliary clearance. About 80% of AuNP deposited in alveoli was relocated from the epithelium into the interstitium within 24 h and was inaccessible to broncho-alveolar lavage. During interstitial long-term retention, re-entrainment within macrophages back onto the lung epithelium and to the larynx and gastrointestinal tract (GIT) dominated AuNP clearance (rate 0.03 d-1) In contrast, AuNP-translocation across the air-blood barrier was much smaller leading to persistent retention in secondary organs and tissues in the ranking order liver > soft issue > spleen > kidneys > skeleton > blood > uterus > heart > brain. The age-independent, inhomogeneous AuNP deposition was probably caused by the negative pressure ventilation. Long-term AuNP clearance was dominated by macrophage-mediated transport from the interstitium to the larynx and GIT. Translocation across the rat air-blood barrier appeared to be similar to that of humans for similar sized AuNP.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
- Institute of Epidemiology , Helmholtz Center Munich-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Winfried Möller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Uwe Holzwarth
- Directorate for Health, Consumers and Reference Materials , Joint Research Centre, European Commission , Via E. Fermi 2749 , I-21027 Ispra , Varese , Italy
| | - Stephanie Hirn
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Alexander Wenk
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Carsten Schleh
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Martin Schäffler
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Nadine Haberl
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Neil Gibson
- Directorate for Health, Consumers and Reference Materials , Joint Research Centre, European Commission , Via E. Fermi 2749 , I-21027 Ispra , Varese , Italy
| | - Johannes C Schittny
- Institute of Anatomy , University of Bern , Baltzerstrasse 2 , CH-3012 Berne , Switzerland
| |
Collapse
|
47
|
Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev 2018; 133:107-130. [PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023]
Abstract
Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia.
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| |
Collapse
|
48
|
Tang J, Zhou H, Hou X, Wang L, Li Y, Pang Y, Chen C, Jiang G, Liu Y. Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Lett 2018. [DOI: 10.1016/j.canlet.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Wang Q, Gao G, Zhang T, Yao K, Chen H, Park MH, Yamamoto H, Wang K, Ma W, Malakhova M, Bode AM, Dong Z. TRAF1 Is Critical for Regulating the BRAF/MEK/ERK Pathway in Non-Small Cell Lung Carcinogenesis. Cancer Res 2018; 78:3982-3994. [PMID: 29748372 DOI: 10.1158/0008-5472.can-18-0429] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) is a unique TRAF protein that can interact directly or indirectly with multiple TNFR family members, regulatory proteins, kinases, and adaptors that contribute to its diverse functions in specific tissues. However, the role of TRAF1 in non-small cell lung cancer (NSCLC) remains unknown. In this study, we report that TRAF1 is overexpressed in human lung cancer cells and tissues. TRAF1 expression level inversely correlated with patient survival probability. Loss of TRAF1 decelerated tumor invasion in a urethane-induced lung carcinogenesis mouse model. Furthermore, TRAF1 expression affected TRAF2-mediated BRAF Lys48-linked ubiquitination, which was followed by the inhibition of growth and differentiation, and the induction of death in lung cancer cells. Overall, our work suggests that TRAF1 plays a novel role in the regulation of the BRAF/MEK/ERK signaling pathway in NSCLC and offers a candidate molecular target for lung cancer prevention and therapy.Significance: These findings identify TRAF1 as a new therapeutic target for NSCLC. Cancer Res; 78(14); 3982-94. ©2018 AACR.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Mi Hee Park
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12:8483-8493. [PMID: 29238188 PMCID: PMC5713688 DOI: 10.2147/ijn.s148359] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is still one of the main cancer therapy treatments, but the curative effect of chemotherapy is relatively low, as such the development of a new cancer treatment is highly desirable. The gradual maturation of nanotechnology provides an innovative perspective not only for cancer therapy but also for many other applications. There are a diverse variety of nanoparticles available, and choosing the appropriate carriers according to the demand is the key issue. The performance of nanoparticles is affected by many parameters, mainly size, shape, surface charge, and toxicity. Using nanoparticles as the carriers to realize passive targeting and active targeting can improve the efficacy of chemotherapy drugs significantly, reduce the mortality rate of cancer patients, and improve the quality of life of patients. In recent years, there has been extensive research on nanocarriers. In this review, the effects of several major parameters of nanoparticles on their physical and chemical properties are reviewed, and then the recent progress in the application of several commonly used nanoparticles is presented.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Hua Tang
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Zefa Liu
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| |
Collapse
|