1
|
Sangubotla R, Gubbiyappa KS, Devarapogu R, Kim J. Modern insights of nanotheranostics in the glioblastoma: An updated review. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167653. [PMID: 39756713 DOI: 10.1016/j.bbadis.2024.167653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures. Recently, cell membrane-camouflaged nanoparticles (CMCNPs) are evolving as promising theranostic agents that can carry specific biological moieties from their biological origin and effectively target GBM cells. Moreover, exosomes have gained widespread scientific attention as an effective drug delivery approach due to their excellent stability in the bloodstream, high biocompatibility, low immune response, and inherent targeting capabilities. Exosomes derived from specific cell types can transport endogenous signaling molecules that have therapeutic promise for GBM therapy. In this context, researchers are utilizing various techniques to isolate exosomes from liquid biomarkers from patients, such as serum and cerebrospinal fluid (CSF). Proper isolation of exosomes may induce the clinical diagnosis in GBM due to their commercial accessibility and real-time monitoring options. Since exosomes are unable to penetrate the blood-brain barrier (BBB), strategic theranostic methods are ideal. For this, understanding interactions between glioma-specific exosomes in the TME and biomarkers is necessary. The versatile characteristics of NPs and their capacity to cross the BBB enable them to be indispensable against GBM. In this review article, we discussed the recent theranostic applications of nanotechnology by comparing the limitations of existing nanotechnology-based approaches.
Collapse
Affiliation(s)
- Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kumar Shiva Gubbiyappa
- GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patencheru, Sangareddy Dist, 502329, Telangana, India
| | - Rajakumari Devarapogu
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
2
|
Chaturvedi S, Gaur A, Garg A. Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule based hydrogel for transdermal delivery. Ther Deliv 2025; 16:139-154. [PMID: 39877995 PMCID: PMC11849957 DOI: 10.1080/20415990.2025.2457312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
AIM Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery. METHOD A 33 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties. Furthermore, the optimized lipid nanocapsule was loaded into a hydrogel and evaluated for rheology, spreadability, ex-vivo skin permeation, deposition and irritation. RESULTS The numerical optimization suggested an optimal formula with desirability value of 0.852 and low prediction errors. The optimized formulation showed good % drug entrapment efficiency (79.56 ± 2.34%), nanometer size (56.68 ± 1.2 nm), monodisperse nature (PDI = 0.176 ± 0.2), spherical morphology and good drug-excipient compatibility. The raloxifene hydrochloride loaded lipid nanocapsule hydrogel showed shear thinning properties, sustained drug delivery, dermal compatibility and significantly higher permeability (2-fold), retention (3.37) for raloxifene hydrochloride compared to the control. CONCLUSION The present study showed a successful development of raloxifene hydrochloride loaded lipid nanocapsule hydrogel with improved skin permeation, retention, and good topical compatibility. This formulation may overcome the challenges associated with raloxifene hydrochloride oral delivery including low bioavailability.
Collapse
Affiliation(s)
| | - Arushi Gaur
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
3
|
Raeisi Estabragh MA, Behnam B, Torkzadeh-Mahani M, Pardakhty A. Niosome as a Drug Delivery Carrier for Sorafenib: Preparation, Investigation of Physicochemical Properties, and In Vitro Effects on HepG2 Cell Line. Adv Pharm Bull 2024; 14:836-845. [PMID: 40190669 PMCID: PMC11970492 DOI: 10.34172/apb.43228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Sorafenib is known as one of the oral anti-cancer drugs used in liver cancer. However, its lipophilic nature can lead to side effects, variable pharmacokinetics, and poor absorption. The use of novel drug delivery systems, such as niosomes, may help address these issues and improve the effectiveness of sorafenib. Methods Different niosomal formulations of sorafenib were prepared. The morphology, size analysis, and physical stability were investigated. The encapsulation efficiency percent of the selected formulations was measured using the dialysis method, and the release of sorafenib was checked for four hours using the Franz diffusion cell. The cytotoxicity and in vitro effect on the HepG2 cell line was investigated using the MTT assay and flow cytometry. Results The mean volume diameter of Span 60/Tween 60/cholesterol (45/45/10 mole%) niosomal formulation was 6 µm with minimal size changes and good stability over six months of storage. The encapsulation efficiency percent of this formulation was 66.40±1.11, and 61.43±1.42 percent of the drug was released within 4 hours. In vitro release followed Higuchi kinetics. Cytotoxicity tests showed an IC50 of 7.5 µg/mL for the niosomal formulation, compared to 15.96 µg/mL for the sorafenib solution. Conclusion Niosomes containing Span 60/ Tween 60/ cholesterol (45/45/10 mole%) are promising for loading and sustained release of sorafenib. The use of niosome as a carrier can enhance the effectiveness of sorafenib on the HepG2 cell line. This niosomal formulation of sorafenib shows potential for future studies.
Collapse
Affiliation(s)
- Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Behnam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Delaporte F, Roger E, Bejaud J, Loyer P, Lagarce F, Savary CC. Internalization and mechanisms of toxicity of lipid nanocapsules in HepG2 and HepaRG hepatoma cells upon acute and chronic exposures. Int J Pharm 2024; 667:124815. [PMID: 39424085 DOI: 10.1016/j.ijpharm.2024.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lipid nanocapsules (LNCs) used as nanomedicine have been developed to enhance pharmacokinetics and decrease side effects of drugs, particularly for cancer therapies. After intravenous administration, LNCs possess an important hepatic tropism however, few data exist about their toxicity and even less after repeated exposure. This study aimed to assess the in vitro toxicity and internalization of unloaded LNCs, of 50 and 100 nm size, on HepG2 and HepaRG liver cell lines. Internalization of the 50 nm LNCs was slower compared to the 100 nm LNCs and both LNCs exhibited a higher toxicity on cancerous HepG2 cells compared to differentiated HepaRG cells. LNCs were mainly internalized via caveolin-mediated endocytosis in both cell lines. Upon chronic exposure, the toxicity of LNCs on HepaRG cells increased, although the pathways of internalization remained unchanged. Cell death studies have demonstrated an involvement of ferroptosis, but not of apoptosis. After acute and repeated exposures on HepaRG cells, the 100 nm LNCs showed a good safety profile. Finally, LNCs induced a more significant toxicity associated with faster internalization in the HepG2 cancerous model than in the differentiated HepaRG cells. This provides good evidence for LNCs to potentialize the cytotoxic effects of an active drug on liver cancer cells.
Collapse
Affiliation(s)
- Flavien Delaporte
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; CHU Angers, 4 rue Larrey, 49033 Angers, France.
| | - Emilie Roger
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Jérome Bejaud
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Pascal Loyer
- Inserm, University of Rennes, INRAE, NuMeCan Institute (Nutrition, Metabolisms and Cancer), Rennes, France
| | - Frédéric Lagarce
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; CHU Angers, 4 rue Larrey, 49033 Angers, France
| | - Camille C Savary
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
5
|
Thiruvengadam R, Dareowolabi BO, Moon EY, Kim JH. Nanotherapeutic strategy against glioblastoma using enzyme inhibitors. Biomed Pharmacother 2024; 181:117713. [PMID: 39615164 DOI: 10.1016/j.biopha.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Glioblastoma is the most aggressive brain cancer and thus patients with glioblastoma have a severely low 5-year survival rate (<5 %). Glioblastoma damages neural centers, causing severe depression, anxiety, and cognitive disorders. Glioblastoma is highly resistant to most of available anti-tumor medications, due to heterogeneity of glioblastoma as well as the presence of stem-like cells. To overcome the challenges in the current medications against glioblastoma, novel medications that are effective in treating the aggressive and heterogenous glioblastoma should be developed. Enzyme inhibitor and nanomedicine have been getting attention because of effective anticancer efficacies of enzyme inhibitors and a role of nanomedicine as effective carrier of chemotherapeutic drugs by targeting specific tumor areas. Furthermore, a tumor-initiating neuroinflammatory microenvironment, which is crucial for glioblastoma progression, was linked with several carcinogenesis pathways. Therefore, in this review, first we summarize neuroinflammation and glioblastoma-related neuropathways. Second, we discuss the importance of enzyme inhibitors targeting specific proteins in relation with neuroinflammation and glioblastoma-related molecular mechanisms. Third, we summarize recent findings on the significance of nanotherapeutic anticancer drugs developed using natural or synthetic enzyme inhibitors against glioblastoma as well as currently available Food and Drug Administration (FDA)-approved drugs against glioblastoma.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | | | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
6
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
7
|
Sun Y, Shen Y, Li X. Retracted article: Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered 2024; 15:1995573. [PMID: 34709983 PMCID: PMC10802192 DOI: 10.1080/21655979.2021.1995573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Yi Sun, Yulong Shen and Xing Li. Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1995573.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yulong Shen
- Department of Neurosurgery, Huaihua First People’s Hospital, Huaihua City, Hunan Province, China
| | - Xing Li
- Department of Neurosurgery, Taizhou First People’s Hospital, Taizhou City, Zhejiang Province, China
| |
Collapse
|
8
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
10
|
Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res 2024; 154:104691. [PMID: 38703993 DOI: 10.1016/j.mvr.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.
Collapse
Affiliation(s)
| | - Irina M Farber
- Department of children's diseases of the F. Filatov clinical institute of children's health, I. M. Sechenov First Moscow State Medical University of Health of Russian Federation (Sechenov University), Moscow, Russia
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan..
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Qadisiyyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
11
|
Otavi S, Lad N, Shah S, Navale A, Acharya S, Kaur G, Mishra M, Tekade RK. Lipidic Nanosystem as State-of-the-Art Nanovehicle for Biomedical Applications. Indian J Microbiol 2024; 64:429-444. [PMID: 39010996 PMCID: PMC11246368 DOI: 10.1007/s12088-024-01298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/29/2024] [Indexed: 07/17/2024] Open
Abstract
Lipids have tremendously transformed the biomedical field, especially in the last few decades. Nanosystems, especially Lipid nanocapsules (LNCs), have emerged as the most demanding nanovehicle systems for delivering drugs, genes, and other diagnostic agents. Unique attributes and characteristic features such as higher encapsulation efficiency, stealth effect, ability to solubilize a wide range of drugs, capability to inhibit P-gp efflux pumps, and higher stability play a vital role in engaging this nanosystem. LNCs are a lipid-based nano-drug delivery method that combines the most significant traits of liposomes with polymeric nanoparticles. Structurally, LNCs have an oily core consisting of medium and long triglycerides and an aqueous phase encased in an amphiphilic shell. This manuscript crosstalks LNCs for various biomedical applications. A detailed elaboration of the structural composition, methods of preparation, and quality control aspects has also been attained, with particular emphasis on application approaches, ongoing challenges, and their possible resolution. The manuscript also expounds the preclinical data and discusses the patents atlas of LNCs to assist biomedical scientists working in this area and foster additional research. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01298-3.
Collapse
Affiliation(s)
- Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Niyatiben Lad
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Sweety Shah
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Aniket Navale
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Sweta Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Gagandeep Kaur
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Mahima Mishra
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| |
Collapse
|
12
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
13
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
14
|
Känkänen V, Fernandes M, Liu Z, Seitsonen J, Hirvonen SP, Ruokolainen J, Pinto JF, Hirvonen J, Balasubramanian V, Santos HA. Microfluidic preparation and optimization of sorafenib-loaded poly(ethylene glycol-block-caprolactone) nanoparticles for cancer therapy applications. J Colloid Interface Sci 2023; 633:383-395. [PMID: 36462264 DOI: 10.1016/j.jcis.2022.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The use of amphiphilic block copolymers to generate colloidal delivery systems for hydrophobic drugs has been the subject of extensive research, with several formulations reaching the clinical development stages. However, to generate particles of uniform size and morphology, with high encapsulation efficiency, yield and batch-to-batch reproducibility remains a challenge, and various microfluidic technologies have been explored to tackle these issues. Herein, we report the development and optimization of poly(ethylene glycol)-block-(ε-caprolactone) (PEG-b-PCL) nanoparticles for intravenous delivery of a model drug, sorafenib. We developed and optimized a glass capillary microfluidic nanoprecipitation process and studied systematically the effects of formulation and process parameters, including different purification techniques, on product quality and batch-to-batch variation. The optimized formulation delivered particles with a spherical morphology, small particle size (dH < 80 nm), uniform size distribution (PDI < 0.2), and high drug loading degree (16 %) at 54 % encapsulation efficiency. Furthermore, the stability and in vitro drug release were evaluated, showing that sorafenib was released from the NPs in a sustained manner over several days. Overall, the study demonstrates a microfluidic approach to produce sorafenib-loaded PEG-b-PCL NPs and provides important insight into the effects of nanoprecipitation parameters and downstream processing on product quality.
Collapse
Affiliation(s)
- Voitto Känkänen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Drug Carrier and Depot Systems, Bayer Oy, FI-20210 Turku, Finland.
| | - Micaela Fernandes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; iMed-ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal; Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan, 1, 9713 AV Groningen, the Netherlands
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja, 2, FI-02150 Espoo, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja, 2, FI-02150 Espoo, Finland
| | - João F Pinto
- iMed-ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan, 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
15
|
Varlamova EG, Khabatova VV, Gudkov SV, Turovsky EA. Ca 2+-Dependent Effects of the Selenium-Sorafenib Nanocomplex on Glioblastoma Cells and Astrocytes of the Cerebral Cortex: Anticancer Agent and Cytoprotector. Int J Mol Sci 2023; 24:ijms24032411. [PMID: 36768736 PMCID: PMC9917080 DOI: 10.3390/ijms24032411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
16
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
17
|
Li DD, Tang YL, Wang X. Challenges and exploration for immunotherapies targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:55-68. [PMID: 36684057 PMCID: PMC9850757 DOI: 10.4251/wjgo.v15.i1.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have made significant breakthroughs in the treatment of various tumors, greatly improving clinical efficacy. As the fifth most common antitumor treatment strategy for patients with solid tumors after surgery, chemotherapy, radiotherapy and targeted therapy, the therapeutic response to ICIs largely depends on the number and spatial distribution of effector T cells that can effectively identify and kill tumor cells, features that are also important when distinguishing malignant tumors from “cold tumors” or “hot tumors”. At present, only a small proportion of colorectal cancer (CRC) patients with deficient mismatch repair (dMMR) or who are microsatellite instability-high (MSI-H) can benefit from ICI treatments because these patients have the characteristics of a “hot tumor”, with a high tumor mutational burden (TMB) and massive immune cell infiltration, making the tumor more easily recognized by the immune system. In contrast, a majority of CRC patients with proficient MMR (pMMR) or who are microsatellite stable (MSS) have a low TMB, lack immune cell infiltration, and have almost no response to immune monotherapy; thus, these tumors are “cold”. The greatest challenge today is how to improve the immunotherapy response of “cold tumor” patients. With the development of clinical research, immunotherapies combined with other treatment strategies (such as targeted therapy, chemotherapy, and radiotherapy) have now become potentially effective clinical strategies and research hotspots. Therefore, the question of how to promote the transformation of “cold tumors” to “hot tumors” and break through the bottleneck of immunotherapy for cold tumors in CRC patients urgently requires consideration. Only by developing an in-depth understanding of the immunotherapy mechanisms of cold CRCs can we screen out the immunotherapy-dominant groups and explore the most suitable treatment options for individuals to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan-Ling Tang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
18
|
Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2022; 15:pharmaceutics15010059. [PMID: 36678688 PMCID: PMC9863099 DOI: 10.3390/pharmaceutics15010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high mortality rates. Due to its invasiveness, heterogeneity, and incomplete resection, the treatment is very challenging. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have great potential for GBM treatment, however, their efficacy is primarily limited by poor brain distribution due to the presence of the blood-brain barrier (BBB). This review focuses on the potential of TKIs in GBM therapy and provides an insight into the reasons behind unsuccessful clinical trials of TKIs in GBM despite the success in treating other cancer types. The main section is dedicated to the use of promising drug delivery strategies for targeted delivery to brain tumors. Use of brain targeted delivery strategies can help enhance the efficacy of TKIs in GBM. Among various drug delivery approaches used to bypass or cross BBB, utilizing nanocarriers is a promising strategy to augment the pharmacokinetic properties of TKIs and overcome their limitations. This is because of their advantages such as the ability to cross BBB, chemical stabilization of drug in circulation, passive or active targeting of tumor, modulation of drug release from the carrier, and the possibility to be delivered via non-invasive intranasal route.
Collapse
|
19
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
20
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
21
|
Lipid nanocapsules enhance the transdermal delivery of drugs regardless of their physico-chemical properties. Int J Pharm 2022; 628:122264. [DOI: 10.1016/j.ijpharm.2022.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022]
|
22
|
Ibrahim A, Abdel Gaber SA, Fawzi Kabil M, Ahmed-Farid OA, Hirsch AK, El-Sherbiny IM, Nasr M. Baicalin lipid nanocapsules for treatment of glioma: Characterization, mechanistic cytotoxicity, and pharmacokinetic evaluation. Expert Opin Drug Deliv 2022; 19:1549-1560. [DOI: 10.1080/17425247.2022.2139370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | | | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
23
|
Paclitaxel and Curcumin as Dual-Drug-Loaded Lipid Nanocapsules in the Management of Brain Tumour. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
24
|
Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, Wang A, Lu Y. Inducing vascular normalization: A promising strategy for immunotherapy. Int Immunopharmacol 2022; 112:109167. [PMID: 36037653 DOI: 10.1016/j.intimp.2022.109167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In solid tumors, the vasculature is highly abnormal in structure and function, resulting in the formation of an immunosuppressive tumor microenvironment by limiting immune cells infiltration into tumors. Vascular normalization is receiving much attention as an alternative strategy to anti-angiogenic therapy, and its potential therapeutic targets include signaling pathways, angiogenesis-related genes, and metabolic pathways. Endothelial cells play an important role in the formation of blood vessel structure and function, and their metabolic processes drive blood vessel sprouting in parallel with the control of genetic signals in cancer. The feedback loop between vascular normalization and immunotherapy has been discussed extensively in many reviews. In this review, we summarize the impact of aberrant tumor vascular structure and function on drug delivery, metastasis, and anti-tumor immune responses. In addition, we present evidences for the mutual regulation of immune vasculature. Based on the importance of endothelial metabolism in controlling angiogenesis, we elucidate the crosstalk between endothelial cells and immune cells from the perspective of metabolic pathways and propose that targeting abnormal endothelial metabolism to achieve vascular normalization can be an alternative strategy for cancer treatment, which provides a new theoretical basis for future research on the combination of vascular normalization and immunotherapy.
Collapse
Affiliation(s)
- Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Capart A, Metwally K, Bastiancich C, Da Silva A. Multiphysical numerical study of photothermal therapy of glioblastoma with photoacoustic temperature monitoring in a mouse head. BIOMEDICAL OPTICS EXPRESS 2022; 13:1202-1223. [PMID: 35414964 PMCID: PMC8973158 DOI: 10.1364/boe.444193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
This paper presents a multiphysical numerical study of a photothermal therapy performed on a numerical phantom of a mouse head containing a glioblastoma. The study has been designed to be as realistic as possible. Heat diffusion simulations were performed on the phantom to understand the temperature evolution in the mouse head and therefore in the glioblastoma. The thermal dose has been calculated and lesions caused by heat are shown. The thermal damage on the tumor has also been quantified. To improve the effectiveness of the therapy, the photoabsorber's concentration was increased locally, at the tumor site, to mimic the effect of using absorbing contrast agents such as nanoparticles. Photoacoustic simulations were performed in order to monitor temperature in the phantom: as the Grüneisen parameter changes with the temperature, the photoacoustic signal undergoes changes that can be linked to temperature evolution. These photoacoustic simulations were performed at different instants during the therapy and the evolution of the photoacoustic signal as a function of the spatio-temporal distribution of the temperature in the phantom was observed and quantified. We have developed in this paper a numerical tool that can be used to help defining key parameters of a photothermal therapy.
Collapse
Affiliation(s)
- Antoine Capart
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Chiara Bastiancich
- Institute Neurophysiopathol, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
26
|
Zhu D, Li Y, Zhang Z, Xue Z, Hua Z, Luo X, Zhao T, Lu C, Liu Y. Recent advances of nanotechnology-based tumor vessel-targeting strategies. J Nanobiotechnology 2021; 19:435. [PMID: 34930293 PMCID: PMC8686559 DOI: 10.1186/s12951-021-01190-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects. ![]()
Collapse
Affiliation(s)
- Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Li L, Li Y, Zou H. A novel role for apatinib in enhancing radiosensitivity in non-small cell lung cancer cells by suppressing the AKT and ERK pathways. PeerJ 2021; 9:e12356. [PMID: 34760374 PMCID: PMC8557687 DOI: 10.7717/peerj.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Radioresistance is still the major cause of radiotherapy failure and poor prognosis in patients with non-small cell lung cancer (NSCLC). Apatinib (AP) is a highly selective inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2). Whether and how AP affects radiosensitivity in NSCLC remains unknown. The present study aimed to explore the radiosensitization effect of AP in NSCLC and its underlying mechanism as a radiosensitizer. Methods The NSCLC cell lines A549 and LK2 were treated with AP, ionizing radiation (IR), or both AP and IR. Expression of VEGFR2 was analyzed by western blot and RT-PCR. Cell proliferation was measured using CCK-8 and colony formation assays. Apoptosis and cell cycle distribution in NSCLC cells were analyzed by flow cytometry. Nuclear phosphorylated histone H2AX foci immunofluorescence staining was performed to evaluate the efficacy of the combination treatment. Western blot was used to explore the potential mechanisms of action. Results AP inhibited cell proliferation in a dose- and time-dependent manner. Flow cytometry analysis indicated that AP significantly increased radiation-induced apoptosis. Colony formation assays revealed that AP enhanced the radiosensitivity of NSCLC cells. AP strongly restored radiosensitivity by increasing IR-induced G2/M phase arrest. AP effectively inhibited repair of radiation-induced DNA double-strand breaks. Western blot analysis showed that AP enhanced radiosensitivity by downregulating AKT and extracellular signal-regulated kinase (ERK) signaling. Conclusion Our findings suggest that AP may enhance radiosensitivity in NSCLC cells by blocking AKT and ERK signaling. Therefore, AP may be a potential clinical radiotherapy synergist and a novel small-molecule radiosensitizer in NSCLC. Our study fills a gap in the field of anti-angiogenic drugs and radiosensitivity.
Collapse
Affiliation(s)
- Lin Li
- The First Oncology Department, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuexian Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Wei J, Xia Y, Meng F, Ni D, Qiu X, Zhong Z. Small, Smart, and LDLR-Specific Micelles Augment Sorafenib Therapy of Glioblastoma. Biomacromolecules 2021; 22:4814-4822. [PMID: 34677048 DOI: 10.1021/acs.biomac.1c01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeted molecular therapy, for example, with sorafenib (SF) is considered as a new and potent strategy for glioblastoma (GBM) that remains hard to treat today. Several clinical trials with SF, as monotherapy or combination therapy with current treatments, have not met the clinical endpoints, likely as a result of the blood-brain barrier (BBB) and inferior GBM delivery. Here, we designed and explored small, smart, and LDLR-specific micelles to load SF (LDLR-mSF) and to improve SF therapy of GBM by enhancing BBB penetration, GBM accumulation, and cell uptake. LDLR-mSF with 2.5% ApoE peptide functionality based on poly(ethylene glycol)-poly(ε-caprolactone-co-dithiolane trimethylene carbonate)-mefenamate exhibited nearly quantitative SF loading, small size (24 nm), high colloidal stability, and glutathione-activated SF release. The in vitro and in vivo studies certified that LDLR-mSF greatly enhanced BBB permeability and U-87 MG cell uptake and caused 10.6- and 12.9-fold stronger anti-GBM activity and 6.0- and 2.5-fold higher GBM accumulation compared with free SF and non-LDLR mSF controls, respectively. The treatment of an orthotopic human GBM tumor model revealed that LDLR-mSF at a safe dosage of 15 mg of SF/kg significantly retarded tumor progression and improved the survival rate by inducing tumor cell apoptosis and inhibiting tumor angiogenesis. These small, smart, and LDLR-specific micelles provide a potential solution to enhance targeted molecular therapy of GBM.
Collapse
Affiliation(s)
- Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Dawei Ni
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
29
|
Dabholkar N, Waghule T, Krishna Rapalli V, Gorantla S, Alexander A, Narayan Saha R, Singhvi G. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Liu J, Chen J, Liu H, Zhang K, Zeng Q, Yang S, Jiang Z, Zhang X, Chen T, Li D, Shan H. Bi/Se-Based Nanotherapeutics Sensitize CT Image-Guided Stereotactic Body Radiotherapy through Reprogramming the Microenvironment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42473-42485. [PMID: 34474563 DOI: 10.1021/acsami.1c11763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The particular characteristics of hypoxia, immune suppression in the tumor microenvironment, and the lack of accurate imaging guidance lead to the limited effects of stereotactic body radiotherapy (SBRT) in reducing the recurrence rate and mortality of hepatocellular carcinoma (HCC). This research developed a novel theranostic agent based on Bi/Se nanoparticles (NPs), synthesized by a simple reduction reaction method for in vivo CT image-guided SBRT sensitization in mice. After loading Lenvatinib (Len), the obtained Bi/Se-Len NPs had excellent performance in reversing hypoxia and the immune suppression status of HCC. In vivo CT imaging results uncovered that the radiotherapy (RT) area could be accurately labeled after the injection of Bi/Se-Len NPs. Under Len's unique and robust properties, in vivo treatment was then carried out upon injection of Bi/Se-Len NPs, achieving excellent RT sensitization effects in a mouse HCC model. Comprehensive tests and histological stains revealed that Bi/Se-Len NPs could reshape and normalize tumor blood vessels, reduce the hypoxic situation of the tumor, and upregulate tumor-infiltrating CD4+ and CD8+ T lymphocytes around the tumors. Our work highlights an excellent proposal of Bi/Se-Len NPs as theranostic nanoparticles for image-guided HCC radiotherapy.
Collapse
Affiliation(s)
- Jiani Liu
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Jiayao Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Ke Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Qi Zeng
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| |
Collapse
|
31
|
de Cristo Soares Alves A, Lavayen V, de Fraga Dias A, Bruinsmann FA, Scholl JN, Cé R, Visioli F, Oliveira Battastini AM, Stanisçuaski Guterres S, Figueiró F, Raffin Pohlmann A. EGFRvIII peptide nanocapsules and bevacizumab nanocapsules: a nose-to-brain multitarget approach against glioblastoma. Nanomedicine (Lond) 2021; 16:1775-1790. [PMID: 34313137 DOI: 10.2217/nnm-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the antitumor efficacy of bevacizumab-functionalized nanocapsules in a rat glioblastoma model after the pretreatment with nanocapsules functionalized with a peptide-specific to the epidermal growth factor receptor variant III. Materials & methods: Nanocapsules were prepared, physicochemical characterized and intranasally administered to rats. Parameters such as tumor size, histopathological characteristics and infiltration of CD8+ T lymphocytes were evaluated. Results: The strategy of treatment resulted in a reduction of 87% in the tumor size compared with the control group and a higher infiltration of CD8+ T lymphocytes in tumoral tissue. Conclusion: The block of two different molecular targets using nose-to-brain delivery represents a new and promising approach against glioblastoma.
Collapse
Affiliation(s)
- Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Vladimir Lavayen
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Rodrigo Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS 90035-003, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035-003, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
32
|
Lai H, Zhong L, Huang Y, Zhao Y, Qian Z. Progress in Application of Nanotechnology in Sorafenib. J Biomed Nanotechnol 2021; 17:529-557. [DOI: 10.1166/jbn.2021.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation of the tyrosine kinase signaling pathway is closely related to tumor development, and tyrosine kinase inhibitors are important targets for potential anticancer strategies. In particular, sorafenib, as a representative drug of multitarget tyrosine kinase inhibitors, has
an important clinical status and is widely used for treating various solid tumors and diabetic complications. However, poor aqueous solubility of sorafenib, poor bioavailability of commonly used oral dose forms, poor accumulation at tumor sites, and severe off-target effects that tend to induce
intolerable systemic side effects in patients have greatly reduced its therapeutic efficiency and limited its extensive clinical application. To improve the properties of sorafenib, increase the efficiency of clinical treatment, and overcome the increasingly prominent phenomenon of sorafenib
resistance, multiple investigations have been conducted. Numerous studies have reported that the properties of nanomaterials, such as small particle size, large specific surface area, high surface activity and high adsorption capacity, make nanotechnology promising for the construction of
ideal sorafenib nanodelivery systems to achieve timed and targeted delivery of sorafenib to tumors, prolong the blood circulation time of the drug, improve the utilization efficiency of the drug and reduce systemic toxic side effects. This review summarizes the progress of research applications
in nanotechnology related to sorafenib, discusses the current problems, and expresses expectations for the prospect of clinical applications of sorafenib with improved performance.
Collapse
Affiliation(s)
- Huili Lai
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiyong Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting
Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
33
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
34
|
SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics. Drug Deliv Transl Res 2021; 11:515-523. [PMID: 33405212 DOI: 10.1007/s13346-020-00880-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioma is a type of cancer with a very poor prognosis with a survival of around 15 months in the case of glioblastoma multiforme (GBM). In order to advance in personalized medicine, we developed polymeric nanoparticles (PNP) loaded with both SPION (superparamagnetic iron oxide nanoparticles) and doxorubicin (DOX). The former being used for its potential to accumulate the PNP in the tumor under a strong magnetic field and the later for its therapeutic potential. The emulsion solvent and evaporation method was selected to develop monodisperse PNP with high loading efficiency in both SPION and DOX. Once injected in mice, a significant accumulation of the PNP was observed within the tumoral tissue under static magnetic field as observed by MRI leading to a reduction of tumor growth rate.
Collapse
|
35
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
36
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
37
|
Current Perspectives on Therapies, Including Drug Delivery Systems, for Managing Glioblastoma Multiforme. ACS Chem Neurosci 2020; 11:2962-2977. [PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
Collapse
|
38
|
Formica ML, Legeay S, Bejaud J, Montich GG, Ullio Gamboa GV, Benoit JP, Palma SD. Novel hybrid lipid nanocapsules loaded with a therapeutic monoclonal antibody - Bevacizumab - and Triamcinolone acetonide for combined therapy in neovascular ocular pathologies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111398. [PMID: 33321575 DOI: 10.1016/j.msec.2020.111398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study was to design and develop a novel hybrid formulation based on lipid nanocapsules containing bevacizumab (BVZ), an effective therapeutic antibody, on the surface and triamcinolone acetonide (TA) in the inner core (BVZ-TA-LNC) intended to improve ocular therapy. Hence, a phase inversion-insertion one step method was developed to drug loading and surface modification of lipid nanocapsules by post-insertion of a bifunctional polymer, followed by antibody coupling using "click" chemistry. The covalent bond and antibody capacity binding to its specific antigen were confirmed by thermal analysis and immunoassay, respectively. BVZ-TA-LNC presented nanometric size (102 nm), negative surface potential (-19 mV) and exhibiting 56% of TA in the lipid core. BVZ-TA-LNC tended to prevent the endothelial cell migration and significantly prevented the capillary formation induced by the vascular endothelium growth factor (VEGF). The novel hybrid system allowed the co-loading of two different therapeutic molecules and may be promising to improve the therapy of eye disorders that occur with inflammation and/or neovascularization.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Samuel Legeay
- Micro et Nanomédecines Translationnelles, MINT, INSERM U1066, CNRS UMR 6021, Université d'Angers, Angers 49933, France.
| | - Jérôme Bejaud
- Micro et Nanomédecines Translationnelles, MINT, INSERM U1066, CNRS UMR 6021, Université d'Angers, Angers 49933, France.
| | - Guillermo Gabriel Montich
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gabriela Verónica Ullio Gamboa
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Jean-Pierre Benoit
- Micro et Nanomédecines Translationnelles, MINT, INSERM U1066, CNRS UMR 6021, Université d'Angers, Angers 49933, France.
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
39
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
40
|
Nery de Albuquerque Rego G, da Hora Alves A, Penteado Nucci M, Bustamante Mamani J, Anselmo de Oliveira F, Gamarra LF. Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations. Int J Mol Sci 2020; 21:ijms21124490. [PMID: 32599834 PMCID: PMC7349965 DOI: 10.3390/ijms21124490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanoformulations and their physical and chemical characteristics; the therapeutic anti-angiogenic process; and methods for assessing the effects on antiangiogenic markers caused by therapies. The articles included in the review were heterogeneous and varied in practically all aspects related to nanoformulations and models. However, there was slight variance in the antiangiogenic effect analysis. CD31 was extensively used as a marker, which does not provide a view of the effects on the most diverse aspects involved in angiogenesis. Therefore, the present review highlighted the need for standardization between the different approaches of antiangiogenic therapy for the GBM model that allows a more effective meta-analysis and that helps in future translational studies.
Collapse
Affiliation(s)
| | - Arielly da Hora Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | - Mariana Penteado Nucci
- LIM44-Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Javier Bustamante Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | | | - Lionel Fernel Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
41
|
Mukherjee A, Madamsetty VS, Paul MK, Mukherjee S. Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer. Int J Mol Sci 2020; 21:E455. [PMID: 31936832 PMCID: PMC7013812 DOI: 10.3390/ijms21020455] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a process of generation of de-novo blood vessels from already existing vasculature. It has a crucial role in different physiological process including wound healing, embryonic development, and tumor growth. The methods by which therapeutic drugs inhibit tumor angiogenesis are termed as anti-angiogenesis cancer therapy. Developments of angiogenic inhibiting drugs have various limitations causing a barrier for successful treatment of cancer, where angiogenesis plays an important role. In this context, investigators developed novel strategies using nanotechnological approaches that have demonstrated inherent antiangiogenic properties or used for the delivery of antiangiogenic agents in a targeted manner. In this present article, we decisively highlight the recent developments of various nanoparticles (NPs) including liposomes, lipid NPs, protein NPs, polymer NPs, inorganic NPs, viral and bio-inspired NPs for potential application in antiangiogenic cancer therapy. Additionally, the clinical perspectives, challenges of nanomedicine, and future perspectives are briefly analyzed.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Aavishkar Oral Strips Pvt Ltd., 109/3, IDA, Phase 2, Sector 2, Lane 6, Cherlapally, Hyderabad 500051, India;
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - Manash K. Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles (UCLA), Factor Bldg. 10-240, 621 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
42
|
Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M. Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. Int J Mol Sci 2019; 20:ijms20246126. [PMID: 31817343 PMCID: PMC6940944 DOI: 10.3390/ijms20246126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
There is a huge demand for pro-/anti-angiogenic nanomedicines to treat conditions such as ischemic strokes, brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Nanomedicines are therapeutic particles in the size range of 10–1000 nm, where the drug is encapsulated into nano-capsules or adsorbed onto nano-scaffolds. They have good blood–brain barrier permeability, stability and shelf life, and able to rapidly target different sites in the brain. However, the relationship between the nanomedicines’ physical and chemical properties and its ability to travel across the brain remains incompletely understood. The main challenge is the lack of a reliable drug testing model for brain angiogenesis. Recently, microfluidic platforms (known as “lab-on-a-chip” or LOCs) have been developed to mimic the brain micro-vasculature related events, such as vasculogenesis, angiogenesis, inflammation, etc. The LOCs are able to closely replicate the dynamic conditions of the human brain and could be reliable platforms for drug screening applications. There are still many technical difficulties in establishing uniform and reproducible conditions, mainly due to the extreme complexity of the human brain. In this paper, we review the prospective of LOCs in the development of nanomedicines for brain angiogenesis–related conditions.
Collapse
Affiliation(s)
- Subhathirai Subramaniyan Parimalam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
- Correspondence: or
| | - Simona Badilescu
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
| | - Rama Bhat
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada;
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| |
Collapse
|
43
|
Liao J, Jin H, Li S, Xu L, Peng Z, Wei G, Long J, Guo Y, Kuang M, Zhou Q, Peng S. Apatinib potentiates irradiation effect via suppressing PI3K/AKT signaling pathway in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:454. [PMID: 31694662 PMCID: PMC6836669 DOI: 10.1186/s13046-019-1419-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022]
Abstract
Background Limited effective intervention for advanced hepatocellular carcinoma (HCC) is available. This study aimed to investigate the potential clinical utility of apatinib, a highly selective inhibitor of the vascular endothelial growth factor receptor-2 (VEGFR2) tyrosine kinase, as a radiosensitizer in the treatment of HCC. Methods Four human HCC cell lines SMMC-7721, MHCC-97H, HCCLM3 and Hep-3B were treated with apatinib, irradiation or combination treatment. Colony formation assay, flow cytometry and nuclear γ-H2AX foci immunofluorescence staining were performed to evaluate the efficacy of combination treatment. RNA sequencing was conducted to explore the potential mechanism. The impact of combination treatment on tumor growth was assessed by xenograft mice models. Results Colony formation assay revealed that apatinib enhanced the radiosensitivity of HCC cell lines. Apatinib suppressed repair of radiation-induced DNA double-strand breaks. Flow cytometry analysis showed that apatinib increased radiation-induced apoptosis. Apatinib radiosensitized HCC via suppression of radiation-induced PI3K/AKT pathway. Moreover, an in vivo study indicated apatinib combined with irradiation significantly decreased xenograft tumor growth. Conclusions Our results indicate that apatinib has therapeutic potential as a radiosensitizer in HCC, and PI3K/AKT signaling pathway plays a critical role in mediating radiosensitization of apatinib.
Collapse
Affiliation(s)
- Junbin Liao
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huilin Jin
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaoqiang Li
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenwei Peng
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianting Long
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Guo
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of General Surgery, Huiya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, 516081, Guangdong, China.
| | - Sui Peng
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
44
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|