1
|
Edvinsson L, Krause DN. Switching Off Vascular MAPK Signaling: A Novel Strategy to Prevent Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:952-961. [PMID: 38334872 PMCID: PMC12045832 DOI: 10.1007/s12975-024-01234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Patients who initially survive the rupture and repair of a brain aneurysm often take a devastating turn for the worse some days later and die or suffer permanent neurologic deficits. This catastrophic sequela is attributed to a delayed phase of global cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH), but we lack effective treatment. Here we present our view, based on 20 years of research, that the initial drop in blood flow at the time of rupture triggers genomic responses throughout the brain vasculature that manifest days later as increased vasoconstriction and decreased cerebral blood flow. We propose a novel treatment strategy to prevent DCI by early inhibition of the vascular mitogen-activated protein kinase (MAPK) pathway that triggers expression of vasoconstrictor and inflammatory mediators. We summarize evidence from experimental SAH models showing early treatment with MAPK inhibitors "switches off" these detrimental responses, maintains flow, and improves neurological outcome. This promising therapy is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
- Department of Experimental Research, Glostrup Research Institute, CopenhagenUniversity, Copenhagen, Denmark.
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Department of Pharmaceutical Sciences, SchoolofPharmacy&PharmaceuticalSciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
3
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, Shafeeque CM, Jose DA, Torres K, Guzman J, Dunn A, P Kumar T, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi after Subarachnoid Hemorrhage in Mice. RESEARCH SQUARE 2024:rs.3.rs-4468292. [PMID: 38947083 PMCID: PMC11213206 DOI: 10.21203/rs.3.rs-4468292/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Purpose Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus 12/15-LOX is an important target to prevent delayed cerebral ischemia. Methods SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day five to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and for development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. Results In SAH mice, 12/15-LOX was upregulated in brain vascular cells and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Conclusions Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Sung Ha Hong
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Sithara Thomas
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - C M Shafeeque
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Dania A Jose
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Kiara Torres
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Jose Guzman
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - T P Kumar
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Spiros L Blackburn
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Devin W McBride
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| |
Collapse
|
4
|
Bömers JP, Grell AS, Edvinsson L, Johansson SE, Haanes KA. The MEK Inhibitor Trametinib Improves Outcomes following Subarachnoid Haemorrhage in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15121446. [PMID: 36558896 PMCID: PMC9785726 DOI: 10.3390/ph15121446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a haemorrhagic stroke that causes approximately 5% of all stroke incidents. We have been working on a treatment strategy that targets changes in cerebrovascular contractile receptors, by blocking the MEK/ERK1/2 signalling pathway. Recently, a positive effect of trametinib was found in male rats, but investigations of both sexes in pre-clinical studies are an important necessity. In the current study, a SAH was induced in female rats, by autologous blood-injection into the pre-chiasmatic cistern. This produces a dramatic, transient increase in intracranial pressure (ICP) and an acute and prolonged decrease in cerebral blood flow. Rats were then treated with either vehicle or three doses of 0.5 mg/kg trametinib (specific MEK/ERK1/2 inhibitor) intraperitoneally at 3, 9, and 24 h after the SAH. The outcome was assessed by a panel of tests, including intracranial pressure (ICP), sensorimotor tests, a neurological outcome score, and myography. We observed a significant difference in arterial contractility and a reduction in subacute increases in ICP when the rats were treated with trametinib. The sensory motor and neurological outcomes in trametinib-treated rats were significantly improved, suggesting that the improved outcome in females is similar to that of males treated with trametinib.
Collapse
Affiliation(s)
- Jesper Peter Bömers
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, 221 84 Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Correspondence:
| |
Collapse
|
5
|
Pre-clinical effects of highly potent MEK1/2 inhibitors on rat cerebral vasculature after organ culture and subarachnoid haemorrhage. Clin Sci (Lond) 2019; 133:1797-1811. [DOI: 10.1042/cs20190636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Background: Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats. Aim: The purpose of the present study was to analyse the impact of a broad selection of high potency MEK1/2 inhibitors in an organ culture model and use the IC50 values obtained from the organ culture to select highly potent inhibitors for pre-clinical in vivo studies. Results: Nine highly potent mitogen activated protein kinase kinase (MEK1/2) inhibitors were screened and the two most potent inhibitors from the organ culture screening, trametinib and PD0325901, were tested in an in vivo experimental rat SAH model with intrathecal injections. Subsequently, the successful inhibitor trametinib was administered intraperitoneally in a second in vivo study. In both regimens, trametinib treatment caused significant reductions in the endothelin-1 induced contractility after SAH, which is believed to be associated with endothelin B receptor up-regulation. Trametinib treated rats showed improved neurological scores, evaluated by the ability to traverse a rotating pole, after induced SAH. Conclusion: The PD0325901 treatment did not improve the neurological score after SAH, nor showed any beneficial therapeutic effect on the contractility, contrasting with the reduction in neurological deficits seen after trametinib treatment. These data show that trametinib might be a potential candidate for treatment of SAH.
Collapse
|