1
|
Connor K, Conroy E, White K, Shiels LP, Keek S, Ibrahim A, Gallagher WM, Sweeney KJ, Clerkin J, O'Brien D, Cryan JB, O'Halloran PJ, Heffernan J, Brett F, Lambin P, Woodruff HC, Byrne AT. A clinically relevant computed tomography (CT) radiomics strategy for intracranial rodent brain tumour monitoring. Sci Rep 2024; 14:2720. [PMID: 38302657 PMCID: PMC10834979 DOI: 10.1038/s41598-024-52960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Here, we establish a CT-radiomics based method for application in invasive, orthotopic rodent brain tumour models. Twenty four NOD/SCID mice were implanted with U87R-Luc2 GBM cells and longitudinally imaged via contrast enhanced (CE-CT) imaging. Pyradiomics was employed to extract CT-radiomic features from the tumour-implanted hemisphere and non-tumour-implanted hemisphere of acquired CT-scans. Inter-correlated features were removed (Spearman correlation > 0.85) and remaining features underwent predictive analysis (recursive feature elimination or Boruta algorithm). An area under the curve of the receiver operating characteristic curve was implemented to evaluate radiomic features for their capacity to predict defined outcomes. Firstly, we identified a subset of radiomic features which distinguish the tumour-implanted hemisphere and non- tumour-implanted hemisphere (i.e, tumour presence from normal tissue). Secondly, we successfully translate preclinical CT-radiomic pipelines to GBM patient CT scans (n = 10), identifying similar trends in tumour-specific feature intensities (E.g. 'glszm Zone Entropy'), thereby suggesting a mouse-to-human species conservation (a conservation of radiomic features across species). Thirdly, comparison of features across timepoints identify features which support preclinical tumour detection earlier than is possible by visual assessment of CT scans. This work establishes robust, preclinical CT-radiomic pipelines and describes the application of CE-CT for in-depth orthotopic brain tumour monitoring. Overall we provide evidence for the role of pre-clinical 'discovery' radiomics in the neuro-oncology space.
Collapse
Affiliation(s)
- Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland
| | - Emer Conroy
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kieron White
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland
| | - Liam P Shiels
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland
| | - Simon Keek
- The D-Lab: Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Abdalla Ibrahim
- The D-Lab: Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - William M Gallagher
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | - James Clerkin
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - David O'Brien
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Jane B Cryan
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Philip J O'Halloran
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Philippe Lambin
- The D-Lab: Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab: Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland.
- National Pre-Clinical Imaging Centre (NPIC), Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
2
|
Cruz JVR, Batista C, Afonso BDH, Alexandre-Moreira MS, Dubois LG, Pontes B, Moura Neto V, Mendes FDA. Obstacles to Glioblastoma Treatment Two Decades after Temozolomide. Cancers (Basel) 2022; 14:cancers14133203. [PMID: 35804976 PMCID: PMC9265128 DOI: 10.3390/cancers14133203] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastomas are the most common and aggressive brain tumors in adults, with a median survival of 15 months. Treatment is surgical removal, followed by chemotherapy and/or radiotherapy. Current chemotherapeutics do not kill all the tumor cells and some cells survive, leading to the appearance of a new tumor resistant to the treatment. These treatment-resistant cells are called tumor stem cells. In addition, glioblastoma cells have a high capacity for migration, forming new tumors in areas distant from the original tumor. Studies are now focused on understanding the molecular mechanisms of chemoresistance and controlling drug entry into the brain to improve drug performance. Another promising therapeutic approach is the use of viruses that specifically destroy glioblastoma cells, preserving the neural tissue around the tumor. In this review, we summarize the main biological features of glioblastoma and the therapeutic targets that are currently under study for new clinical trials. Abstract Glioblastomas are considered the most common and aggressive primary brain tumor in adults, with an average of 15 months’ survival rate. The treatment is surgery resection, followed by chemotherapy with temozolomide, and/or radiotherapy. Glioblastoma must have wild-type IDH gene and some characteristics, such as TERT promoter mutation, EGFR gene amplification, microvascular proliferation, among others. Glioblastomas have great heterogeneity at cellular and molecular levels, presenting distinct phenotypes and diversified molecular signatures in each tumor mass, making it difficult to define a specific therapeutic target. It is believed that the main responsibility for the emerge of these distinct patterns lies in subcellular populations of tumor stem cells, capable of tumor initiation and asymmetric division. Studies are now focused on understanding molecular mechanisms of chemoresistance, the tumor microenvironment, due to hypoxic and necrotic areas, cytoskeleton and extracellular matrix remodeling, and in controlling blood brain barrier permeabilization to improve drug delivery. Another promising therapeutic approach is the use of oncolytic viruses that are able to destroy specifically glioblastoma cells, preserving the neural tissue around the tumor. In this review, we summarize the main biological characteristics of glioblastoma and the cutting-edge therapeutic targets that are currently under study for promising new clinical trials.
Collapse
Affiliation(s)
- João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
| | - Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
| | - Bernardo de Holanda Afonso
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Magna Suzana Alexandre-Moreira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Campus A.C. Simões, Avenida Lourival Melo Mota, Maceio 57072-970, Brazil;
| | - Luiz Gustavo Dubois
- UFRJ Campus Duque de Caxias Professor Geraldo Cidade, Rodovia Washington Luiz, n. 19.593, km 104.5, Santa Cruz da Serra, Duque de Caxias 25240-005, Brazil;
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
| | - Vivaldo Moura Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-590, Brazil; (J.V.R.C.); (C.B.); (B.d.H.A.); (B.P.); (V.M.N.)
- Correspondence:
| |
Collapse
|
3
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
4
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
5
|
Molotkov A, Carberry P, Dolan MA, Joseph S, Idumonyi S, Oya S, Castrillon J, Konofagou EE, Doubrovin M, Lesser GJ, Zanderigo F, Mintz A. Real-Time Positron Emission Tomography Evaluation of Topotecan Brain Kinetics after Ultrasound-Mediated Blood-Brain Barrier Permeability. Pharmaceutics 2021; 13:405. [PMID: 33803856 PMCID: PMC8003157 DOI: 10.3390/pharmaceutics13030405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary adult brain malignancy with an extremely poor prognosis and a median survival of fewer than two years. A key reason for this high mortality is that the blood-brain barrier (BBB) significantly restricts systemically delivered therapeutics to brain tumors. High-intensity focused ultrasound (HIFU) with microbubbles is a methodology being used in clinical trials to noninvasively permeabilize the BBB for systemic therapeutic delivery to GBM. Topotecan is a topoisomerase inhibitor used as a chemotherapeutic agent to treat ovarian and small cell lung cancer. Studies have suggested that topotecan can cross the BBB and can be used to treat brain metastases. However, pharmacokinetic data demonstrated that topotecan peak concentration in the brain extracellular fluid after systemic injection was ten times lower than in the blood, suggesting less than optimal BBB penetration by topotecan. We hypothesize that HIFU with microbubbles treatment can open the BBB and significantly increase topotecan concentration in the brain. We radiolabeled topotecan with 11C and acquired static and dynamic positron emission tomography (PET) scans to quantify [11C] topotecan uptake in the brains of normal mice and mice after HIFU treatment. We found that HIFU treatments significantly increased [11C] topotecan brain uptake. Moreover, kinetic analysis of the [11C] topotecan dynamic PET data demonstrated a substantial increase in [11C] topotecan volume of distribution in the brain. Furthermore, we found a decrease in [11C] topotecan brain clearance, confirming the potential of HIFU to aid in the delivery of topotecan through the BBB. This opens the potential clinical application of [11C] topotecan as a tool to predict topotecan loco-regional brain concentration in patients with GBMs undergoing experimental HIFU treatments.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Patrick Carberry
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Martin A. Dolan
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Simon Joseph
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Sidney Idumonyi
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Shunichi Oya
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - John Castrillon
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA;
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Glenn J. Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA;
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA;
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| |
Collapse
|