1
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Chen Q, Zhao Y, Xie C, Wu S, Ji W, Xiao X, Zheng X. Therapeutic Effect of a Novel M1 Macrophage-Targeted Nanodrug in Chronic Periodontitis Mice. Mol Pharm 2024; 21:1677-1690. [PMID: 38478716 DOI: 10.1021/acs.molpharmaceut.3c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1β, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.
Collapse
Affiliation(s)
- Qiuye Chen
- Department of Stomatology, Cancer Hospital Affiliated to Hainan Medical University, Haikou 570311, Hainan, China
| | - Yunshan Zhao
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan, China
- Integrated Department, Hainan Stomatological Hospital, Haikou 570105, Hainan, China
| | - Chen Xie
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan, China
| | - Shiwang Wu
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan, China
| | - Weizhen Ji
- Integrated Department, Hainan Stomatological Hospital, Haikou 570105, Hainan, China
| | - Xu Xiao
- Department of Stomatology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Xu Zheng
- Department of Stomatology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
3
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
4
|
Yang JI, Lee HL, Yun JJ, Kim J, So KH, Jeong YIL, Kang DH. pH and Redox-Dual Sensitive Chitosan Nanoparticles Having Methyl Ester and Disulfide Linkages for Drug Targeting against Cholangiocarcinoma Cells. MATERIALS 2022; 15:ma15113795. [PMID: 35683095 PMCID: PMC9181436 DOI: 10.3390/ma15113795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study is to prepare pH- and redox-sensitive nanoparticles for doxorubicin (DOX) delivery against DOX-resistant HuCC-T1 human cholangiocarcinoma (CCA) cells. For this purpose, L-histidine methyl ester (HIS) was attached to chitosan oligosaccharide (COS) via dithiodipropionic acid (abbreviated as ChitoHISss). DOX-incorporated nanoparticles of ChitoHISss conjugates were fabricated by a dialysis procedure. DOX-resistant HuCC-T1 cells were prepared by repetitive exposure of HuCC-T1 cells to DOX. ChitoHISss nanoparticles showed spherical morphology with a small diameter of less than 200 nm. The acid pH and glutathione (GSH) addition induced changes in the size distribution pattern of ChitoHISss nanoparticles from a narrow/monomodal distribution pattern to a wide/multimodal pattern and increased the fluorescence intensity of the nanoparticle solution. These results indicate that a physicochemical transition of nanoparticles can occur in an acidic pH or redox state. The more acidic the pH or the higher the GSH concentration the higher the drug release rate was, indicating that an acidic environment or higher redox states accelerated drug release from ChitoHISss nanoparticles. Whereas free DOX showed decreased anticancer activity at DOX-resistant HuCC-T1 cells, DOX-incorporated ChitoHISss nanoparticles showed dose-dependent anticancer activity. Intracellular delivery of DOX-incorporated ChitoHISss nanoparticles was relatively increased at an acidic pH and in the presence of GSH, indicating that DOX-incorporated ChitoHISss nanoparticles have superior acidic pH- and redox-sensitive behavior. In an in vivo tumor xenograft model, DOX-incorporated ChitoHISss nanoparticles were specifically delivered to tumor tissues and then efficiently inhibited tumor growth. We suggest that ChitoHISss nanoparticles are a promising candidate for treatment of CCA.
Collapse
Affiliation(s)
- Ju-Il Yang
- Department of Medical Science, School of Medicine, Pusan National University, Busan 50612, Korea;
- Department of Internal Medicine, Yangsan Hospital, Pusan National University, Busan 50612, Korea
| | - Hye Lim Lee
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Science, Jeonnam Bioindustry Foundation, Gokseong-gun 57509, Korea;
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| | - Young-IL Jeong
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| | - Dae-Hwan Kang
- Department of Medical Science, School of Medicine, Pusan National University, Busan 50612, Korea;
- Department of Internal Medicine, Yangsan Hospital, Pusan National University, Busan 50612, Korea
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| |
Collapse
|
5
|
Wang L, Yu L, Ge H, Bu Y, Sun M, Huang D, Wang S. A novel reversible dual-mode probe based on amorphous carbon nanodots for the detection of mercury ion and glutathione. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|