1
|
Zhou QM, Lu YF, Yang XY, Zhang JG, Wang YN, Luo WP, Mao J, Hou J, Wu F, Wang WL, Tang GP, Bai HZ, Yu RS. Redox-driven hybrid nanoenzyme dynamically activating ferroptosis and disulfidptosis for hepatocellular carcinoma theranostics. J Colloid Interface Sci 2025; 693:137611. [PMID: 40253866 DOI: 10.1016/j.jcis.2025.137611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Hepatocellular carcinoma (HCC) presents formidable therapeutic challenges due to its pronounced metabolic heterogeneity, particularly arising from spatially uneven glucose availability within the tumor microenvironment (TME). To address this, we developed a glutathione (GSH)-responsive, biomimetic hybrid nanoenzyme system (M@GOx/Fe-HMON) composed of hollow mesoporous organosilica nanoparticles co-loaded with glucose oxidase (GOx) and Fe2+/Fe3+ redox pairs, and cloaked in homologous tumor cell membranes for enhanced targeting. In glucose-rich regions, the nanoenzyme orchestrates a GOx-peroxidase (POD) cascade that produces reactive oxygen species (ROS) via the Fenton reaction, leading to ferroptosis through intensified oxidative stress and GSH depletion. Conversely, under glucose-deficient conditions, the nanoenzyme promotes disulfidptosis by aggravating glucose deprivation, depleting nicotinamide adenine dinucleotide phosphate (NADPH), and impairing cystine metabolism, ultimately resulting in actin cytoskeletal collapse. This dual-action platform dynamically adapts to the tumor's metabolic landscape, selectively inducing ferroptosis or disulfidptosis according to glucose levels, disrupting redox homeostasis and amplifying antitumor efficacy. Notably, this study is the first to integrate ferroptosis and disulfidptosis activation into a single, metabolism-sensitive nanoenzyme system, providing a novel paradigm for exploiting tumor metabolic heterogeneity. Furthermore, the combination of endogenous metabolic regulation with magnetic resonance imaging (MRI)-guided diagnosis introduces an innovative and noninvasive strategy for precision cancer theranostics.
Collapse
Affiliation(s)
- Qiao-Mei Zhou
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yuan-Fei Lu
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiao-Yan Yang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jin-Guo Zhang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yi-Ning Wang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Wang-Ping Luo
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jin Mao
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Fan Wu
- Department of Neurosurgery, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Gu-Ping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Hong-Zhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Ri-Sheng Yu
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
2
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Dai X, Li L, Li M, Yan X, Li J, Mao H, Wang C, Xu H. One pot preparation of muti-mode nanoplatform to combat ovarian cancer. Biomed Pharmacother 2023; 165:115172. [PMID: 37473681 DOI: 10.1016/j.biopha.2023.115172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological cancers with high mortality rate. The battle against ovarian cancer usually impaired by the evolved multidrug resistance (MDR) phenotype as well as metastasis in cancers, which urgently call for the development of multi-mode strategies to overcome the MDR and reduce metastasis. Considering the good benefits of ferroptosis and photothermal therapy (PTT) in cancer management, we herein proposed a facile way to construct nanoparticle platform (Fe-Dox/PVP) composed of ferric chloride, doxorubicin (Dox) and polyvinyl pyrrolidone (PVP) for the multi-mode therapy of ovarian cancer using chemotherapy, ferroptosis and mild hypothermia PTT. Our results demonstrated that Fe-Dox/PVP with mild hypothermia was shown to have improved endosomal escape/drug delivery, enhanced ferroptosis induction and good tumor targeting effects. Most importantly, the integration of all three effects into one platform provided increased anti-metastasis effect and promising in vitro/in vivo anticancer performance with high biocompatibility. In this study, we offer a facile and robust way to prepare a multi-mode nanoplatform to combat ovarian cancer, which can be further extended for the management of many other cancers.
Collapse
Affiliation(s)
- Xiuliang Dai
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Lingjun Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Minhui Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Xiaomeng Yan
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhang Li
- Dalian Medical University, Dalian, China
| | - Hao Mao
- Dalian Medical University, Dalian, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China; School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
4
|
Lu W, Liu W, Hu A, Shen J, Yi H, Cheng Z. Combinatorial Polydopamine-Liposome Nanoformulation as an Effective Anti-Breast Cancer Therapy. Int J Nanomedicine 2023; 18:861-879. [PMID: 36844433 PMCID: PMC9944797 DOI: 10.2147/ijn.s382109] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Drug delivery systems (DDSs) based on liposomes are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve biosafe, accurate, and efficient cancer therapy of liposomes with single function or single mechanism. To solve this problem, we designed a multifunctional and multimechanism nanoplatform based on polydopamine (PDA)-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT. Methods ICG and DOX were co-incorporated in polyethylene glycol modified liposomes, which were further coated with PDA by a facile two-step method to construct PDA-liposome nanoparticles (PDA@Lipo/DOX/ICG). The safety of nanocarriers was investigated on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, and combinatorial treatment effect of the nanoparticles were assessed on human breast cancer cells MDA-MB-231. In vivo biodistribution, thermal imaging, biosafety assessment, and combination therapy effects were estimated based on MDA-MB-231 subcutaneous tumor model. Results Compared with DOX·HCl and Lipo/DOX/ICG, PDA@Lipo/DOX/ICG showed higher toxicity on MDA-MB-231 cells. After endocytosis by target cells, PDA@Lipo/DOX/ICG produced a large amount of ROS for PDT by 808 nm laser irradiation, and the cell inhibition rate of combination therapy reached up to 80.4%. After the tail vein injection (DOX equivalent of 2.5 mg/kg) in mice bearing MDA-MB-231 tumors, PDA@Lipo/DOX/ICG significantly accumulated at the tumor site at 24 h post injection. After 808 nm laser irradiation (1.0 W/cm2, 2 min) at this timepoint, PDA@Lipo/DOX/ICG efficiently suppressed the proliferation of MDA-MB-231 cell and even thoroughly ablated tumors. Negligible cardiotoxicity and no treatment-induced side effects were observed. Conclusion PDA@Lipo/DOX/ICG is a multifunctional nanoplatform based on PDA-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT.
Collapse
Affiliation(s)
- Wangxing Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Jian Shen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Hanxi Yi
- School of Basic Medical Science, Central South University, Changsha, 410000, People’s Republic of China,Correspondence: Hanxi Yi; Wenjie Liu, Email ;
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| |
Collapse
|
5
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|