1
|
Ji W, Nightingale TE, Zhao F, Fritz NE, Phillips AA, Sisto SA, Nash MS, Badr MS, Wecht JM, Mateika JH, Panza GS. The Clinical Relevance of Autonomic Dysfunction, Cerebral Hemodynamics, and Sleep Interactions in Individuals Living With SCI. Arch Phys Med Rehabil 2024; 105:166-176. [PMID: 37625532 DOI: 10.1016/j.apmr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
A myriad of physiological impairments is seen in individuals after a spinal cord injury (SCI). These include altered autonomic function, cerebral hemodynamics, and sleep. These physiological systems are interconnected and likely insidiously interact leading to secondary complications. These impairments negatively influence quality of life. A comprehensive review of these systems, and their interplay, may improve clinical treatment and the rehabilitation plan of individuals living with SCI. Thus, these physiological measures should receive more clinical consideration. This special communication introduces the under investigated autonomic dysfunction, cerebral hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral hemodynamics, and sleep disorders and some secondary outcomes are discussed. Recent evidence is synthesized to make clinical recommendations on the assessment and potential management of important autonomic, cerebral hemodynamics, and sleep-related dysfunction in people with SCI. Finally, a few recommendations for clinicians and researchers are provided.
Collapse
Affiliation(s)
- Wenjie Ji
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Trauma Science Research, University of Birmingham, Birmingham, UK; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Nora E Fritz
- Department of Health Care Sciences, Program of Physical Therapy, Detroit, MI; Department of Neurology, Wayne State University, Detroit, MI
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular institute, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada; RESTORE.network, University of Calgary, Calgary, AB, Canad
| | - Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabilitation Physical Therapy, Miami, FL; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Jill M Wecht
- James J Peters VA Medical Center, Department of Spinal Cord Injury Research, Bronx, NY; Icahn School of Medicine Mount Sinai, Departments of Rehabilitation and Human Performance, and Medicine Performance, and Medicine, New York, NY
| | - Jason H Mateika
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
2
|
Wecht JM, Weir JP, Peters CG, Weber E, Wylie GR, Chiaravalloti NC. Autonomic Cardiovascular Control, Psychological Well-Being, and Cognitive Performance in People With Spinal Cord Injury. J Neurotrauma 2023; 40:2610-2620. [PMID: 37212256 DOI: 10.1089/neu.2022.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
PURPOSE To examine associations between parameters of psychological well-being, injury characteristics, cardiovascular autonomic nervous system (ANS) control, and cognitive performance in persons with spinal cord injury (SCI) compared with age-matched uninjured controls. This is an observational, cross-sectional study including a total of 94 participants (52 with SCI and 42 uninjured controls: UIC). Cardiovascular ANS responses were continuously monitored at rest and during administration of the Paced Auditory Serial Addition Test (PASAT). Self-report scores on the SCI-Quality of Life questionnaires are reported for depression, anxiety, fatigue, resilience, and positive affect. Participants with SCI performed significantly more poorly on the PASAT compared with the uninjured controls. Although not statistically significant, participants with SCI tended to report more psychological distress and less well-being than the uninjured controls. In addition, when compared with uninjured controls, the cardiovascular ANS responses to testing were significantly altered in participants with SCI; however, these responses to testing did not predict PASAT performance. Self-reported levels of anxiety were significantly related to PASAT score in the SCI group, but there was no significant relationship between PASAT and the other indices of SCI-Quality of Life. Future investigations should more closely examine the relationship among cardiovascular ANS impairments, psychological disorders, and cognitive dysfunction to better elucidate the underpinnings of these deficits and to guide interventions aimed at improving physiological, psychological, and cognitive health after SCI. Tetraplegia, paraplegia, blood pressure variability, cognitive, mood.
Collapse
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Bronx, New York, USA
- Bronx Veterans Medical Research Foundation, Bronx, New York, USA
- Department of Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Science, University of Kansas, Lawrence, Kansas, USA
| | - Caitlyn G Peters
- James J Peters VA Medical Center, Bronx, New York, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Erica Weber
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Glenn R Wylie
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Nancy C Chiaravalloti
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| |
Collapse
|
3
|
Smith SL, Helton WS, Matthews G, Funke GJ. Performance, Hemodynamics, and Stress in a Two-Day Vigilance Task: Practical and Theoretical Implications. HUMAN FACTORS 2023; 65:212-226. [PMID: 33902346 DOI: 10.1177/00187208211011333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore vigilance task performance, cerebral blood flow velocity (CBFV), workload, and stress in a within-subjects, two-session experiment. BACKGROUND Vigilance, or sustained attention, tasks are often characterized by a decline in operator performance and CBFV with time on task, and high workload and stress. Though performance is known to improve with practice, past research has not included measures of CBFV, stress, and workload in a within-subjects multi-session design, which may also provide insight into ongoing theoretical debate. METHOD Participants performed a vigilance task on two separate occasions. Performance, CBFV, workload, and self-reported stress were measured. RESULTS Within each session, results were consistent with the vigilance profile found in prior research. Across sessions, performance improved but the time on task decrement remained. Mean CBFV and workload ratings did not differ between sessions, but participants reported significantly less distress, worry, and engagement after session two compared to one. CONCLUSION Though practice may not disrupt the standard vigilance profile, it may serve to improve overall performance and reduce stress. However, repeated exposure may have negative implications for engagement and mind-wandering. APPLICATION It is important to better understand the relationship between experience, performance, physiological response, and self-reported stress and workload in vigilance because real-world environments often require operators to do the same task over many occasions. While performance improvement and reduced distress is an encouraging result, the decline in engagement requires further research. Results across sessions fail to provide support to the mind-wandering theory of vigilance.
Collapse
Affiliation(s)
| | | | | | - Gregory J Funke
- 33319 Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio, USA
| |
Collapse
|
4
|
Burma JS, Rattana S, Johnson NE, Smirl JD. Do mean values tell the full story? Cardiac cycle and biological sex comparisons in temporally derived neurovascular coupling metrics. J Appl Physiol (1985) 2023; 134:426-443. [PMID: 36603050 DOI: 10.1152/japplphysiol.00170.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous reports have noted cerebrovascular regulation differs across the cardiac cycle, with greater regulation occurring within systole. However, this methodological notion has not been meticulously scrutinized during temporally deduced neurovascular coupling (NVC) metrics with additional respect to biological sex. Analyses of 111 healthy individuals (40 females/71 males) were performed where participants engaged in the "Where's Waldo?" paradigm. All NVC parameters were quantified in the posterior and middle cerebral arteries at 310 unique timepoints. Several individuals completed repeat testing which enabled for between-day (3 timepoints) and within-day (7 timepoints) reliability comparisons in 17 and 11 individuals, respectively. One-way analysis of variance compared NVC metrics between diastole, mean, and systole values, as well as differences between biological sexes. Greater absolute cerebral blood velocity (CBv; baseline and peak) and total activation (area under the curve) were noted within systole for both posterior cerebral artery (PCA; P < 0.001) and middle cerebral artery (MCA; P < 0.001) values; however, the relative percent increase in CBv was greater within diastole (P < 0.001). Females had an elevated diastolic and mean CBv and a greater diastolic cerebrovascular conductance (P < 0.050). No sex differences were present for systolic CBv measures and within parameters quantifying the NVC response (area under the curve/relative CBv increase) across the cardiac cycle (P > 0.072). Future investigations seeking to differentiate cerebral regulatory mechanisms between clinical populations may benefit by performing their analyses across the cardiac cycle, as certain pathogenesis may affect one aspect of the cardiac cycle independently. Minimal differences were noted between females and males for metrics characterizing the NVC response across the cardiac cycle.NEW & NOTEWORTHY Neurovascular coupling (NVC) studies commonly assess the mean cerebral hemodynamic response with little consideration for diastole, systole, and biological sex. Greater total activation expressed as the area under the curve was seen within systole compared with mean and diastole. Resting cerebral blood velocity sex differences were more prevalent during diastole when the cerebrovasculature was pressure-passive. Future studies should assess the NVC response across the cardiac cycle as it may help delineate the underlying pathophysiology of various clinical populations.
Collapse
Affiliation(s)
- Joel S Burma
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Selina Rattana
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Donovan J, Forrest G, Linsenmeyer T, Kirshblum S. Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-020-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Bloom O, Wecht JM, Legg Ditterline BE, Wang S, Ovechkin AV, Angeli CA, Arcese AA, Harkema SJ. Prolonged Targeted Cardiovascular Epidural Stimulation Improves Immunological Molecular Profile: A Case Report in Chronic Severe Spinal Cord Injury. Front Syst Neurosci 2020; 14:571011. [PMID: 33177997 PMCID: PMC7593242 DOI: 10.3389/fnsys.2020.571011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
In individuals with severe spinal cord injury (SCI), the autonomic nervous system (ANS) is affected leading to cardiovascular deficits, which include significant blood pressure instability, with the prevalence of systemic hypotension and orthostatic intolerance resulting in an increased risk of stroke. Additionally, persons with SCI rostral to thoracic vertebral level 5 (T5), where sympathetic nervous system fibers exit the spinal cord and innervate the immune system, have clinically significant systemic inflammation and increased infection risk. Our recent studies show that lumbosacral spinal cord epidural stimulation (scES), applied at the lumbosacral level using targeted configurations that promote cardiovascular stability (CV-scES), can safely and effectively normalize blood pressure in persons with chronic SCI. Herein we present a case report in a female (age 27 years) with chronic clinically motor complete cervical SCI demonstrating that 97-sessions of CV-scES, which increased systemic blood pressure, improved orthostatic tolerance in association with increased cerebral blood flow velocity in the middle cerebral artery, also promoted positive immunological changes in whole-blood gene expression. Specifically, there was evidence of the down-regulation of inflammatory pathways and the up-regulation of adaptative immune pathways. The findings of this case report suggest that the autonomic effects of epidural stimulation, targeted to promote cardiovascular homeostasis, also improves immune system function, which has a significant benefit to long-term cardiovascular and immunologic health in individuals with long-standing SCI. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02307565.
Collapse
Affiliation(s)
- Ona Bloom
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Jill M Wecht
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States.,Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Bonnie E Legg Ditterline
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Siqi Wang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Alexander V Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Anthony A Arcese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Susan J Harkema
- Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
7
|
Wecht JM, Weir JP, Katzelnick CG, Wylie G, Eraifej M, Nguyen N, Dyson-Hudson T, Bauman WA, Chiaravalloti N. Systemic and Cerebral Hemodynamic Contribution to Cognitive Performance in Spinal Cord Injury. J Neurotrauma 2018; 35:2957-2964. [DOI: 10.1089/neu.2018.5760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jill M. Wecht
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
- Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
| | - Joseph P. Weir
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Caitlyn G. Katzelnick
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Kessler Foundation, West Orange, New Jersey
| | - Glenn Wylie
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
- VA War Related Illness and Injury Study Center, East Orange, New Jersey
| | - Mastanna Eraifej
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
| | - Nhuquynh Nguyen
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
| | - William A. Bauman
- VA RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, New York
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
- Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, New York
| | - Nancy Chiaravalloti
- Kessler Foundation, West Orange, New Jersey
- Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, New Jersey
| |
Collapse
|
8
|
Waldron M, David Patterson S, Jeffries O. Inter-Day Reliability of Finapres ® Cardiovascular Measurements During Rest and Exercise. Sports Med Int Open 2017; 2:E9-E15. [PMID: 30539112 PMCID: PMC6225956 DOI: 10.1055/s-0043-122081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the inter-day test-retest reliability of the Finapres
®
finger pulse pressure measuring device during rest and exercise. Eight male participants visited the laboratory twice for evaluation of the inter-day reliability of the Finapres
®
finger-pulse pressure device to measure: heart rate (HR), stroke volume (SV), cardiac output (Q̇) and mean arterial pressure (MAP) at rest, and treadmill walking at 3 km/h on 1% and 5% inclines. There were no systematic biases for any of the variables between days. The coefficient of variation (CV%) and 95% limits of agreement (95% LoA) was smallest for MAP (CV%=1.6–3.2%; LoA total error=4.6–12 mmHg) and HR (CV%=3.2–3.9%; LoA total error=6.8–11.9 b/min), increasing with exercise intensity (gradient). The pattern of error was different for Q̇, with decreasing CV% (4.8–3.8%) and LoA (4.2–5.7 L/min) from rest to 5% gradient, with the larger errors occurring for resting SV (CV=7.4%; LoA total error=21.5 ml). The device measures MAP and HR reliably between days; however, error increases at higher intensities. The measurement of SV is less reliable, probably owing to underlying algorithmic assumptions.
Collapse
Affiliation(s)
- Mark Waldron
- St Mary's University Twickenham London, School of Sport, Health and Applied Sci, London, United Kingdom of Great Britain and Northern Ireland
| | - Stephen David Patterson
- St Mary's University Twickenham London, School of Sport, Health and Applied Sci, London, United Kingdom of Great Britain and Northern Ireland
| | - Owen Jeffries
- St Mary's University Twickenham London, School of Sport, Health and Applied Sci, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|