1
|
Manaf H, Hamzaid NA, Hasnan N, Yiwei C, Mohafez H, Hisham H, Davis G. High-intensity interval training with functional electrical stimulation cycling for incomplete spinal cord injury patients: A pilot feasibility study. Artif Organs 2024; 48:1449-1457. [PMID: 39041394 DOI: 10.1111/aor.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Consequences of spinal cord injury (SCI) with a sedentary lifestyle will progress to muscle weakness and muscle atrophy, leading to muscle fatigue. This study aimed to determine the feasibility and preliminary effects of high-intensity interval training (HIIT) using functional electrical stimulation (FES) cycling on changes in thigh muscle volume and muscle strength, in patients with incomplete SCI. METHODS Eight incomplete SCI patients (mean age 50 years; 6 women) with stable SCI paraplegia (mean 6.75 years since injury) participated in the HIIT FES cycling (85%-90% peak Watts; 4 × 4-min intervals) three times a week (over 6 weeks). The main outcomes were adherence, participant acceptability, and adverse events. Secondary outcomes were muscle strength (peak torque) and leg volume changes. RESULTS Our findings revealed that the program was well-received by participants, with high levels of adherence, positive feedback, and satisfaction, suggesting that it could be a promising option for individuals seeking to enhance their lower body strength and muscle mass. Additionally, all participants successfully completed the training without any serious adverse events, indicating that the program is safe for use. Finally, we found that the 6-week HIIT FES leg cycling exercise program resulted in notable improvements in isometric peak torque of the quadriceps (range 13.9%-25.6%), hamstring muscle (18.2%-23.3%), and leg volume (1.7%-18.2%). CONCLUSIONS This study highlights HIIT FES leg cycling exercise program potential as an effective intervention for improving lower limb muscle function.
Collapse
Affiliation(s)
- Haidzir Manaf
- Centre for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chen Yiwei
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Mohafez
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hafifi Hisham
- Physiotherapy Program, Center for Rehabilitation and Special Needs Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Glen Davis
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Veith DD, Linde MB, Wiggins CC, Zhao KD, Garlanger KL. Intervention Design of High-Intensity Interval Training in Individuals With Spinal Cord Injury: Narrative Review and Future Perspectives. Top Spinal Cord Inj Rehabil 2023; 29:1-15. [PMID: 38076494 PMCID: PMC10704212 DOI: 10.46292/sci22-00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Background Individuals with spinal cord injury (SCI) have lower levels of physical activity compared to the nondisabled population. Exercise guidelines recommend moderate or vigorous exercise to improve cardiovascular health and reduce cardiometabolic risk factors in persons with SCI. High-intensity interval training (HIIT) is a popular exercise choice and encompasses brief periods of vigorous exercise paired with intermittent periods of recovery. Objectives This review describes the available literature on HIIT for individuals with SCI, including differences in protocol design and suggested areas of further investigation. Methods Our institution's library system performed the comprehensive search. The primary keywords and phrases used to search included spinal cord injury, high-intensity interval training, tetraplegia, paraplegia, and several other related terms. Results Initially 62 records were screened, and 36 were deemed outside the scope of this review. Twenty-six studies published between 2001 and 2021 fulfilled the eligibility criteria and were divided among two researchers for review and analysis. All records required persons with SCI and a standardized HIIT intervention. Study design varied widely with respect to mode of exercise, prescribed intensity, duration of performance intervals, and session duration. This variability necessitates further investigation into the specifics of a HIIT prescription and the associated outcomes for persons with SCI. Conclusion Standardization of HIIT protocols may lead to more robust conclusions regarding its effects on cardiorespiratory fitness as well as mitigation of cardiometabolic risk factors. Meta-analyses will eventually be needed on proper dosing and session parameters to improve cardiorespiratory fitness and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Daniel D. Veith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Margaux B. Linde
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristin D. Zhao
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Kristin L. Garlanger
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
de Sire A, Moggio L, Marotta N, Curci C, Lippi L, Invernizzi M, Mezian K, Ammendolia A. Impact of rehabilitation on volumetric muscle loss in subjects with traumatic spinal cord injury: A systematic review. NeuroRehabilitation 2023; 52:365-386. [PMID: 36806523 DOI: 10.3233/nre-220277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) leads to spinal nerve fiber tract damage resulting in functional impairments. Volumetric muscle loss (VML), a skeletal muscle volume abnormal reduction, is represented by atrophy below the injury level. The strategies for VML management included personalized approaches, and no definite indications are available. OBJECTIVE To identify the rehabilitation effects of VML in subjects with SCI (humans and animals). METHODS PubMed, Scopus, and Web of Science databases were systematically searched to identify longitudinal observational studies with individuals affected by traumatic SCI as participants; rehabilitation treatment as intervention; no control, sham treatment, and electrical stimulation programs as control; total lean body and lower limb lean mass, cross-sectional area, functional gait recovery, muscle thickness, and ultrasound intensity, as outcome. RESULTS Twenty-four longitudinal observational studies were included, evaluating different rehabilitation approaches' effects on the VML reduction in subjects affected by SCI. The data showed that electrical stimulation and treadmill training are effective in reducing the VML in this population. CONCLUSION This systematic review underlines the need to treat subjects with traumatic SCI (humans and animals) with different rehabilitation approaches to prevent VML in the subacute and chronic phases. Further clinical observations are needed to overcome the bias and to define the intervention's timing and modalities.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lucrezia Moggio
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Rehabilitation Unit, Ospedale degliInfermi, Biella, Italy
| | - Nicola Marotta
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| | - Claudio Curci
- Department of Neurosciences, Physical Medicine and Rehabilitation Unit, ASST CarloPoma, Mantova, Italy
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General UniversityHospital in Prague, Prague, Czech Republic
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| |
Collapse
|
4
|
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2022; 103:1168-1178. [PMID: 34687676 DOI: 10.1016/j.apmr.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effects of neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES), or both, training on different body composition parameters in individuals with spinal cord injury. DATA SOURCES Three independent reviewers searched PubMed, Web of Science, Scopus, Cochrane Central, and Virtual Health Library until March 2020. STUDY SELECTION Studies were included if they applied NMES/FES on the lower limb muscles after spinal cord injury, reported stimulation parameters (frequency, pulse duration, and amplitude of current), and body composition parameters, which included muscle cross-sectional area (CSA), fat-free mass, lean mass (LM), fat mass, visceral adipose tissue, and intramuscular fat. DATA SYNTHESIS A total of 46 studies were included in the final analysis with a total sample size of 414 subjects. NMES loading exercise and FES cycling exercise were commonly used for training. Increases in muscle CSA ranged from 5.7-75%, with an average of 26% (n=33). Fifteen studies reported changes (both increase and decrease) in LM or fat-free mas ranged from -4% to 35%, with an average of less than 5%. Changes in fat mass (n=10) were modest. The effect on ectopic adipose tissue is inconclusive, with 2 studies showing an average reduction in intramuscular fat by 9.9%. Stimulation parameters ranged from 200-1000 μs for pulse duration, 2-60 Hz for the frequency, and 10-200 mA in amplitude. Finally, increase in weekly training volumes after NMES loading exercise resulted in a remarkable increase in percentage changes in LM or muscle CSA. CONCLUSIONS NMES/FES is an effective rehabilitation strategy for muscle hypertrophy and increasing LM. Weekly training volumes are associated with muscle hypertrophy after NMES loading exercise. Furthermore, positive muscle adaptations occur despite the applied stimulation parameters. Finally, the included studies reported wide range of stimulation parameters without reporting rationale for such selection.
Collapse
Affiliation(s)
| | - Alhadi M Jahan
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Kristin E Musselman
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Amr A Elsareih
- Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ashraf S Gorgey
- Faculty of Physical Therapy, Cairo University, Giza, Egypt; Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA; Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation, Richmond, VA.
| |
Collapse
|
5
|
Dolbow DR, Davis GM, Welsch M, Gorgey AS. Benefits and interval training in individuals with spinal cord injury: A thematic review. J Spinal Cord Med 2022; 45:327-338. [PMID: 34855568 PMCID: PMC9135438 DOI: 10.1080/10790268.2021.2002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Arm crank ergometry (ACE), functional electrical stimulation leg cycling exercise (FES-LCE), and the combination of the two (FES hybrid exercise) have all been used as activities to help improve the fitness-related health of individuals with spinal cord injury (SCI). More recently, high-intensity interval training (HIIT) has become popular in the non-disabled community due to its ability to produce greater aerobic fitness benefits or equivalent benefits with reduced time commitment. OBJECTIVE This thematic review of the literature sought to determine the potential benefits and practicality of using ACE, FES-LCE, and FES hybrid exercise in an interval training format for individuals with SCI. METHODS Systematic literature searches were conducted in May 2020 and March 2021 focusing on interval training in individuals with SCI. Pre-defined nested search terms were used to narrow the available literature from 4273 citations to 1362 articles. The titles and abstracts were then reviewed to determine the appropriateness of the articles ending with fifteen articles. RESULTS The literature was limited to fifteen articles with low participant numbers (n = 1-20). However, in each article, HIIT protocols either demonstrated a greater improvement in cardiovascular, metabolic, or practicality scores compared to moderate intensity continuous training (MICT) protocols, or improvement during relatively brief time commitments. CONCLUSION The available literature lacked sufficient numbers of randomized control trials. However, the available evidence is encouraging concerning the potential benefits and practicality of using HIIT (ACE, FES-LCE, or FES hybrid exercise) to improve aerobic and anaerobic capacity and decrease cardiometabolic risk after SCI.
Collapse
Affiliation(s)
- David R. Dolbow
- Department of Physical Therapy and College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA,Correspondence to: David R. Dolbow, Department of Physical Therapy and College of Osteopathic Medicine, William Carey University, 710 William Carey Parkway, Hattiesburg, Mississippi39401, USA.
| | - Glen M. Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Michael Welsch
- School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury & Disorders Center, Hunter Holmes McGuire VAMC and Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
7
|
Afshari K, Ozturk ED, Yates B, Picard G, Taylor JA. Effect of hybrid FES exercise on body composition during the sub-acute phase of spinal cord injury. PLoS One 2022; 17:e0262864. [PMID: 35073366 PMCID: PMC8786191 DOI: 10.1371/journal.pone.0262864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To determine the Effect of Hybrid functional electrically stimulated (FES) Exercise on Body Composition during the Sub-acute Phase of Spinal Cord Injury (SCI). DESIGN Randomized Clinical Trial. SETTING Rehabilitation Hospital. PARTICIPANTS Patients within sub-acute phase (3-24 months) of SCI. INTERVENTIONS We investigated if high-intensity exercise training via the addition of functional electrically stimulated (FES) leg muscles, provides sufficient stimulus to mitigate against body composition changes in the sub-acute phase after SCI. MAIN OUTCOME MEASURES We explored potential effects of FES row training (FESRT) on body fat gain, lean mass loss, and cardiometabolic parameters and compared the effects of 6-month of FESRT (n = 18) to standard of care (SOC, n = 13). Those in SOC were crossed over to FESRT. RESULTS FESRT resulted in greater exercise capacity and a tendency for lesser total body fat accumulation with a significant increase in total and leg lean mass (p<0.05). In addition pelvis and total bone mineral density declines were significantly less (p<0.05). Compared to SOC, FESRT did not lead to any significant difference in insulin sensitivity or serum lipids. However, HbA1C levels were significantly decreased in SOC participants who crossed over to 6-month FESRT. CONCLUSION FESRT early after SCI provides a sufficient stimulus to mitigate against detrimental body composition changes. This may lead to prevention of losses in lean mass, including bone.
Collapse
Affiliation(s)
- Khashayar Afshari
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States of America
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA, United States of America
- Spaulding Research Institute, Charlestown, MA, United States of America
| | - Erin D. Ozturk
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA, United States of America
| | - Brandon Yates
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States of America
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA, United States of America
- Spaulding Research Institute, Charlestown, MA, United States of America
| | - Glen Picard
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA, United States of America
| | - J. Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States of America
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA, United States of America
- Spaulding Research Institute, Charlestown, MA, United States of America
| |
Collapse
|
8
|
Dolbow DR, Credeur DP, Lemacks JL, Stokic DS, Pattanaik S, Corbin GN, Courtner AS. Electrically induced cycling and nutritional counseling for counteracting obesity after spinal cord injury: A pilot study. J Spinal Cord Med 2021; 44:533-540. [PMID: 31971487 PMCID: PMC8288120 DOI: 10.1080/10790268.2019.1710939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: The purpose of this pilot study was to determine the preliminary efficacy of interval functional electrical stimulation (FES) cycling combined with nutritional counseling in obese adults with SCI.Setting: Community-based individuals with chronic SCI.Participants: Ten participants with chronic SCI.Interventions: Participants were divided into 2 groups (1) FES cycling and nutritional counseling (FES & Nutri) and (2) nutritional counseling only (Nutri Only). The FES & Nutri group performed high intensity interval FES cycling for 30 min 3 times per week for 8 weeks and received nutritional counseling for 30 min once per week for 8 weeks. The Nutri Only group received the nutritional counseling only.Outcome Measures: Body composition (fat mass, lean mass, body fat percentage), blood glucose levels.Results: Participants in the FES & Nutri group had a statistically significant greater decrease in body fat percentage (M = -1.14) compared to those in the Nutri Only group (M = +0.28) and gained more lean mass in their legs (M = +0.66 kg) compared to the Nutri Only group (M = -1.05 kg).Discussion/Conclusion: The statistically significant decrease in body fat percentage for the FES & Nutri group provides evidence that further study is merited. Future studies should include larger numbers of participants and the possible introduction of a preliminary strengthening program before initiating interval FES cycling. In addition, an increase in exercise volume and a greater role for nutritional counseling should be considered in order to optimize the treatment for obesity.
Collapse
Affiliation(s)
- David R. Dolbow
- School of Physical Therapy, William Carey University, Hattiesburg, Mississippi, USA,Correspondence to: David R. Dolbow, Physical Therapy Program, William Carey University, 710 William Carey Parkway, Hattiesburg, MS39401, USA.
| | - Daniel P. Credeur
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Jennifer L. Lemacks
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Dobrivoje S. Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi, USA
| | - Sambit Pattanaik
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| | - Gevork N. Corbin
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| | - Andrew S. Courtner
- Educational Research and Higher Education Administration, Lincoln Memorial University, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
10
|
Manaf H, Hasnan N, Ariffin A. Training parameters and effects of high-intensity interval training in patients with spinal cord injury: a review of literature. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1917842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Haidzir Manaf
- Clinical and Rehabilitation Exercise Research Group, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine. Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azhar Ariffin
- Physiotherapy Centre, Taman Desa Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Cirnigliaro CM, Parrott JS, Myslinski MJ, Asselin P, Lombard AT, La Fountaine MF, Kirshblum SC, Forrest GF, Dyson-Hudson T, Spungen AM, Bauman WA. Relationships between T-scores at the hip and bone mineral density at the distal femur and proximal tibia in persons with spinal cord injury. J Spinal Cord Med 2020; 43:685-695. [PMID: 31663832 PMCID: PMC7534195 DOI: 10.1080/10790268.2019.1669957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: To identify T-score values at the total hip (TH) and femoral neck (FN) that correspond to the cutoff value of <0.60 g/cm2 for heightened risk of fracture at the distal femur (DF) and proximal tibia (PT).Design: Retrospective analysis of data in a research center's database. Setting: Community-based individuals with spinal cord injury (SCI). Participants: 105 unique individuals with SCI. Outcome Measurements: DXA derived areal BMD (aBMD) and T-score of the DF, PT, TH, and FN. Results: The aBMD at the DF and PT regions were predictors of T-scores at the TH (R2 = 0.63, P < 0.001 and R2 = 0.65, P < 0.001) and FN (R2 = 0.55, P < 0.001 and R2 = 0.58, P < 0.001). Using the DF and PT aBMD of 0.60 g/cm2 as a value below which fractures were more likely to occur, the predicted T-score was -3.1 and -3.5 at the TH and -2.6 and -2.9 at the FN, respectively. However, when the predicted and observed T-score values disagree outside the 95% limit of agreement, the predicted T-score values are lower than the measured T-score values, overestimating the measured values between -2.0 and -4.0 SD. Conclusion: The DF and PT cutoff value for aBMD of 0.60 g/cm2 was a moderate predictor of T-score values at the TH and FN, with considerable inaccuracies outside the clinically acceptable limits of agreement. As such, the direct measurement of knee aBMD in persons with SCI should be performed, whenever possible, prior to prescribing weight bearing upright activities, such as robotic exoskeletal-assisted walking.
Collapse
Affiliation(s)
- Christopher M. Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Correspondence to: Christopher M. Cirnigliaro, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY10468, USA; Ph: (718) 584-9000, Ext. 5420. ;
| | - J. Scott Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Mary Jane Myslinski
- Department of Physical Therapy, School of Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Pierre Asselin
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alexander T. Lombard
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Michael F. La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA,The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Steven C. Kirshblum
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA,Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Gail F. Forrest
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ann M. Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William A. Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA,Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, Liu N, Troy KL, Weaver FM, Shuhart C, Craven BC. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J Clin Densitom 2019; 22:554-566. [PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Fin Biering-Soerensen
- Clinic for Spinal Cord Injuries, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tomas Cervinka
- Department of Physiotherapy and Rehabilitation, Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Therese E Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Nan Liu
- Department of Rehabilitation Medicine and Osteoporosis and Metabolic Bone Disease Center, Peking University Third Hospital, Beijing, China
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, IL, USA; Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Christopher Shuhart
- Swedish Bone Health and Osteoporosis Center, Swedish Medical Group, Seattle WA, USA
| | - Beverley C Craven
- Neural Engineering and Therapeutics Team, KITE Research Institute - University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
13
|
Graham K, Yarar-Fisher C, Li J, McCully KM, Rimmer JH, Powell D, Bickel CS, Fisher G. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals With Spinal Cord Injury: A Pilot Study. Top Spinal Cord Inj Rehabil 2019; 25:248-259. [PMID: 31548792 PMCID: PMC6743747 DOI: 10.1310/sci19-00042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Recent studies in nondisabled individuals have demonstrated that low-volume high-intensity interval training (HIIT) can improve cardiometabolic health similar to moderate-intensity training (MIT) despite requiring 20% of the overall time commitment. To date, there have been no studies assessing the effects of HIIT for improving cardiometabolic health in individuals with SCI. Objectives: The primary purpose of this pilot study was to compare the effects of 6 weeks of low-volume HIIT vs MIT using arm crank ergometer exercise to improve body composition, cardiovascular fitness, glucose tolerance, blood lipids, and blood pressure in a cohort of individuals with longstanding SCI. Methods: Participants were randomized to 6 weeks of HIIT or MIT arm crank exercise training. Aerobic capacity, muscular strength, blood lipids, glucose tolerance, blood pressure, and body composition were assessed at baseline and 6 weeks post training. Results: Seven individuals (6 male, 1 female; n = 3 in MIT and n = 4 in HIIT; mean age 51.3 ± 10.5 years) with longstanding SCI completed the study. The preliminary findings from this pilot study demonstrated that individuals with SCI randomized to either 6 weeks of HIIT or MIT displayed improvements in (a) insulin sensitivity, (b) cardiovascular fitness, and (c) muscular strength (p < .05). However, MIT led to greater improvements in arm fat percent and chest press strength compared to HIIT (p < .05). Conclusion: No differences between MIT and HIIT were observed. Both conditions led to improvements in insulin sensitivity, aerobic capacity, muscle strength, and blood lipids in individuals with SCI. Future larger cohort studies are needed to determine if the shorter amount of time required from HIIT is preferable to current MIT exercise recommendations.
Collapse
Affiliation(s)
- Kyle Graham
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jia Li
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin M McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - James H Rimmer
- UAB/Lakeshore Foundation Research Collaborative, Birmingham, Alabama
| | - Danille Powell
- Department of Physical Medicine and Rehabilitation Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Dolbow DR, Credeur DP, Lemacks JL, Rahimi M, Stokic DS. The Effect of Electrically Induced Cycling and Nutritional Counseling on Cardiometabolic Health in Upper and Lower Motor Neuron Chronic Spinal Cord Injury: Dual Case Report. ACTA ACUST UNITED AC 2019; 6. [PMID: 32149189 PMCID: PMC7059704 DOI: 10.4172/2376-0281.1000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Various therapies have been utilized to improve cardiometabolic health after spinal cord injury (SCI), including Functional Electrical Stimulation (FES) cycling. Typically, FES is used in SCI cases resulting from Upper Motor Neuron Injury (UMN-SCI). However, it has been reported that FES may improve muscle torque and functional mobility in individuals with Lower Motor Neuron Injuries (LMN-SCI) but potential effects on cardiometabolic health have not been studied before. Thus, this study examined the cardiometabolic health response to FES cycling combined with nutritional counseling in two individuals with chronic SCI; one person with LMN-SCI and one with UMN-SCI. Case Presentation: Body composition, vascular stiffness, and glucose deposition were assessed before and after participation in the FES cycling and nutritional counseling program. Despite the decrease in body mass in the case of LMN-SCI but not UMN-SCI, the fat mass-to-lean mass ratio in the lower limbs and trunk increased +4% and +8% respectively, in the former and decreased −10% and −8% respectively in the latter. Both subjects decreased markers of central vascular stiffness (AIx@75, reflection magnitude) as well as blood glucose and HbA1c levels, however, the changes were greater in the case of UMN-SCI. Discussion: This dual case study provides only a partial support for the use of FES cycling alone or in combination with nutritional counseling for improving cardio metabolic health in LMN-SCI, however modest decreases in glucose and vascular stiffness warrant further investigations.
Collapse
Affiliation(s)
- David R Dolbow
- Physical Therapy Program, William Carey University, Hattiesburg, MS, USA
| | - Daniel P Credeur
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Jennifer L Lemacks
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mujtaba Rahimi
- Biomedical Sciences, William Carey University, Hattiesburg, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| |
Collapse
|
15
|
Shea JR, Shay BL, Leiter J, Cowley KC. Energy Expenditure as a Function of Activity Level After Spinal Cord Injury: The Need for Tetraplegia-Specific Energy Balance Guidelines. Front Physiol 2018; 9:1286. [PMID: 30283348 PMCID: PMC6156377 DOI: 10.3389/fphys.2018.01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization recognizes obesity as a global and increasing problem for the general population. Because of their reduced physical functioning, people with spinal cord injury (SCI) face additional challenges for maintaining an appropriate whole body energy balance, and the majority with SCI are overweight or obese. SCI also reduces exercise capacity, particularly in those with higher-level injury (tetraplegia). Tetraplegia-specific caloric energy expenditure (EE) data is scarce. Therefore, we measured resting and exercise-based energy expenditure in participants with tetraplegia and explored the accuracy of general population-based energy use predictors. Body composition and resting energy expenditure (REE) were measured in 25 adults with tetraplegia (C4/5 to C8) and in a sex-age-height matched group. Oxygen uptake, carbon dioxide production, heart rate, perceived exertion, and exercise intensity were also measured in 125 steady state exercise trials. Those with motor-complete tetraplegia, but not controls, had measured REE lower than predicted (mean = 22% less, p < 0.0001). REE was also lower than controls when expressed per kilogram of lean mass. Nine had REE below 1200 kcal/day. We developed a graphic compendium of steady state EE during arm ergometry, wheeling, and hand-cycling. This compendium is in a format that can be used by persons with tetraplegia for exercise prescription (calories, at known absolute intensities). EE was low (55–450 kcal/h) at the intensities participants with tetraplegia were capable of maintaining. If people with tetraplegia followed SCI-specific activity guidelines (220 min/week) at the median intensities we measured, they would expend 563–1031 kcal/week. Participants with tetraplegia would therefore require significant time (4 to over 20 h) to meet a weekly 2000 kcal exercise target. We estimated total daily EE for a range of activity levels in tetraplegia and compared them to predicted values for the general population. Our analysis indicated that the EE values for sedentary through moderate levels of activity in tetraplegia fall well below predicted sedentary levels of activity for the general population. These findings help explain sub-optimal responses to exercise interventions after tetraplegia, and support the need to develop tetraplegia-specific energy-balance guidelines that reflects their unique EE situation.
Collapse
Affiliation(s)
- Jessie R Shea
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Barbara L Shay
- Department of Physical Therapy, College of Rehabilitation Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeff Leiter
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|