1
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
El Choueiri J, Pellicanò F, Laurelli F, Caimi E. Are we doing enough? Lifestyle interventions for enhancing spine health. J Clin Neurosci 2025; 133:111023. [PMID: 39742776 DOI: 10.1016/j.jocn.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Spine-related health issues are a growing concern globally, driven by aging populations, sedentary lifestyles, and obesity rates, particularly in Western industrialized nations. While spine surgery remains a crucial intervention for severe cases, lifestyle modifications-including anti-inflammatory diets, smoking cessation, and physical activity-offer significant potential to prevent spinal conditions and improve surgical outcomes. Inflammation and pro-inflammatory cytokines are implicated in degenerative spinal diseases, and addressing these through diet and exercise could reduce the need for surgical intervention. Moreover, smoking cessation and perioperative nutritional optimization have shown promise in enhancing post-surgical recovery. Despite the demonstrated benefits, barriers exist in integrating these strategies into current practice, including patient adherence challenges and systemic biases toward surgical solutions. This paper advocates for a balanced, patient-centered approach to spine health that combines lifestyle interventions with surgical care, and poses the question: Are we doing enough?
Collapse
Affiliation(s)
- Jad El Choueiri
- Department of Biomedical Sciences, Humanitas University, School of Medicine.
| | | | - Francesco Laurelli
- Department of Biomedical Sciences, Humanitas University, School of Medicine
| | - Edoardo Caimi
- Department of Biomedical Sciences, Humanitas University, School of Medicine
| |
Collapse
|
3
|
LaVela SL, Farkas GJ, Berryman K, Kale IO, Sneij A, Felix ER, Reyes L. Health consequences associated with poor diet and nutrition in persons with spinal cord injuries and disorders. Disabil Rehabil 2024:1-12. [PMID: 39289885 DOI: 10.1080/09638288.2024.2404182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE To describe health consequences associated with poor diet in persons with spinal cord injuries and disorders (SCI/D). MATERIALS/METHODS Descriptive qualitative design using in-depth interviews with SCI/D health providers. Audio-recorded and transcribed verbatim transcripts were coded and analyzed using thematic analysis. RESULTS Participants (n = 12) were from 11 nationwide VA hospitals. Participants were male (75%), white (67%), 26-49 years of age, and most were dietitians (75%) and physiatrists (17%). Seven key themes identified consequences associated with poor diet in persons with SCI/D, including (1) Weight gain and body composition changes, (2) cardiometabolic conditions, (3) bowel dysfunction, (4) pressure injuries/wounds, (5) other SCI/D secondary conditions/complications (renal/kidney; immune function/susceptibility to infections; autonomic dysreflexia; bone health/osteoporosis; pain), (6) physical fatigue, and (7) poor mental health. CONCLUSIONS Excess weight, cardiometabolic conditions, SCI/D secondary conditions/complications (e.g., bowel dysfunction, pressure injuries), and poor mental health were identified as health consequences of inadequate nutrition. Health providers should make individuals with SCI/D aware of the risks and health consequences to incentivize healthier dietary behaviors. Efforts to identify nutrition shortcomings and to develop interventions and tailored care plans are needed to improve a myriad of health consequences due to poor diet and nutrition in persons with SCI/D.
Collapse
Affiliation(s)
- Sherri L LaVela
- Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Hospital, Hines, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kelsey Berryman
- Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Ibuola O Kale
- Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Alicia Sneij
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth R Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- Research Service, Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Lorena Reyes
- Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Hospital, Hines, IL, USA
- Nutrition and Food Services, VA Edward Hines, Jr., Hines, IL, USA
| |
Collapse
|
4
|
Abbaszadeh F, Javadpour P, Mousavi Nasab MM, Jorjani M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4293391. [PMID: 38938696 PMCID: PMC11211004 DOI: 10.1155/2024/4293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jorjani
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of PharmacologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Bigford GE, Lehmann DA, Betancourt LF, Maher JL, Mendez AJ, Nash MS. Modification of the Diabetes Prevention Program Lifestyle Intervention in Persons with Spinal Cord Injury: Efficacy for Reducing Major Cardiometabolic Risks, Increased Fitness, and Improved Health-Related Quality of Life. JOURNAL OF SPINE RESEARCH AND SURGERY 2024; 6:10.26502/fjsrs0070. [PMID: 39309246 PMCID: PMC11414834 DOI: 10.26502/fjsrs0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Individuals with chronic spinal cord injury (SCI) face elevated risks of cardiometabolic diseases, including cardiovascular disease and type 2 diabetes, due to factors like physical inactivity, neurogenic obesity, and disrupted glucose and insulin regulation. We conducted a prospective intervention cohort study involving 20 individuals with SCI (aged 28-60) with neurologic injuries at levels C4-T10 and ASIA scale grades A-D, lasting over a year. Our study assessed the impact of a therapeutic lifestyle intervention (TLI) based on the Diabetes Prevention Program (DPP) and its maintenance phase. The TLI comprised circuit resistance training, a Mediterranean-style calorie-restricted diet, and tailored behavioral support. Key outcomes measured included cardiometabolic risks (plasma analytes and disease biomarkers), anthropometrics (body mass, BMI, tissue composition), global metabolism, fitness (aerobic capacity, peak strength), and health-related quality of life (SF36). Results demonstrated a significant reduction in body mass and BMI by 7.5%, a 7% decrease in total fat mass, and substantial improvements in glucose regulation and insulin sensitivity. Lipid profiles improved, with reduced total cholesterol, triglycerides, and LDL-C, and increased HDL-C. Resting energy expenditure and fat oxidation increased by 27.4% and 58.5%, respectively. Aerobic capacity and dynamic strength also improved significantly. The Physical and Mental Composite Scores of the SF36 improved by 22.8% and 30.5%, respectively. Following the maintenance phase, several positive outcomes persisted, indicating a reduction in risk for cardiovascular disease and comorbid disorders. Our findings support the effectiveness of TLI in reducing cardiometabolic risks, enhancing fitness, and improving health-related quality of life in individuals with chronic SCI. Trial Registration ClinicalTrials.gov, ID: NCT02853149 Registered August 2, 2016.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery, University of Miami Herbert Business School, Miami USA
- The Miami Project to Cure Paralysis, University of Miami Herbert Business School, Miami USA
| | - Doug A Lehmann
- Department of Professional Practice, University of Miami Herbert Business School, Miami USA
| | - Luisa F Betancourt
- Department of Neurological Surgery, University of Miami Herbert Business School, Miami USA
- The Miami Project to Cure Paralysis, University of Miami Herbert Business School, Miami USA
| | | | - Armando J Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, USA
| | - Mark S Nash
- Department of Neurological Surgery, University of Miami Herbert Business School, Miami USA
- The Miami Project to Cure Paralysis, University of Miami Herbert Business School, Miami USA
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
6
|
Gazzellone G, Lanteigne S, Gammage K, Fajardo VA, Ditor DS. The Effects of an Anti-inflammatory Dietary Consultation on Self-efficacy, Adherence and Selected Health Outcomes: A Randomized Control Trial. Am J Lifestyle Med 2023:15598276231215271. [PMID: 39554960 PMCID: PMC11562215 DOI: 10.1177/15598276231215271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Research has shown that an anti-inflammatory diet can reduce inflammation and improve health outcomes in individuals with neurological disability, however, long term adherence is challenging. This study aimed to determine the effects of a 2-part dietary consultation, targeted at identified barriers for adherence in this population, on self-efficacy for adhering to an anti-inflammatory diet, as well as adherence and health outcomes one-month post-intervention. Eleven individuals (10 female, age 51.5±12.6 years) with neurological disability (7 multiple sclerosis, 3 spinal cord injury, 1 muscular dystrophy; 20.5 ± 10.6 years post-injury/diagnosis) participated. The intervention group (n = 7) received recipes for an anti-inflammatory diet and the consultation, while controls (n = 4) received the recipes only. The consultation included a home-visit involving cooking and accessible kitchen equipment demonstrations, and an accompanied trip to the grocery store. Task and barrier self-efficacy improved immediately following the consultation with trends for improvement one-month post-intervention. The consultation was also associated with increased dietary adherence one-month post-intervention and decreased depressive symptoms. Changes in dietary adherence (r = -.61; P = .045), and barrier self-efficacy (r = -.77; P = .009) were negatively correlated to changes in depression. Thus, a consultation targeted at barriers related to anti-inflammatory eating can improve self-efficacy for adherence as well as actual adherence and depressive symptomology one-month later.
Collapse
Affiliation(s)
- Giuseppe Gazzellone
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada (GG, SL, KG, VAF, DSD)
- Brock Functional Inclusion Training (B-Fit) Centre, Thorold, ON, Canada (GG, SL, KG, DSD)
| | - Sarah Lanteigne
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada (GG, SL, KG, VAF, DSD)
- Brock Functional Inclusion Training (B-Fit) Centre, Thorold, ON, Canada (GG, SL, KG, DSD)
| | - Kimberley Gammage
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada (GG, SL, KG, VAF, DSD)
- Brock Functional Inclusion Training (B-Fit) Centre, Thorold, ON, Canada (GG, SL, KG, DSD)
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada (GG, SL, KG, VAF, DSD)
| | - David S. Ditor
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada (GG, SL, KG, VAF, DSD)
- Brock Functional Inclusion Training (B-Fit) Centre, Thorold, ON, Canada (GG, SL, KG, DSD)
| |
Collapse
|
7
|
Pedroza-García KA, Careaga-Cárdenas G, Díaz-Galindo C, Quintanar JL, Hernández-Jasso I, Ramírez-Orozco RE. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr Neurosci 2023; 26:1120-1137. [PMID: 36537581 DOI: 10.1080/1028415x.2022.2133842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Spinal cord injury (SCI) cause significant disability and impact the quality of life of those affected by it. The nutritional status and diet are fundamental to diminish the progression of complications; vitamins modulate the inflammatory response and oxidative stress, promote blood-spinal cord barrier preservation and the prompt recovery of homeostasis. A deep knowledge of the benefits achieved from vitamins in patients with SCI are summarized. Information of dosage, time, and effects of vitamins in these patients are also displayed. Vitamins have been extensively investigated; however, more clinical trials are needed to clarify the scope of vitamin supplementation.Objective: The objective of this review was to offer relevant therapeutic information based on vitamins supplementation for SCI patients.Methods: Basic and clinical studies that have implemented the use of vitamins in SCI were considered. They were selected from the year 2000-2022 from three databases: PubMed, Science Direct and Google Scholar.Results: Consistent benefits in clinical trials were shown in those who were supplemented with vitamin D (prevents osteoporosis and improves physical performance variables), B3 (improves lipid profile) and B12 (neurological prophylaxis of chronic SCI damage) mainly. On the other hand, improvement related to neuroprotection, damage modulation (vitamin A) and its prophylaxis were associated to B complex vitamins supplementation; the studies who reported positive results are displayed in this review.Discussion: Physicians should become familiar with relevant information that can support conventional treatment in patients with SCI, such as the use of vitamins, a viable option that can improve outcomes in patients with this condition.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Gabriela Careaga-Cárdenas
- Biomedical Research, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Ricardo E Ramírez-Orozco
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
8
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
9
|
Stojic S, Eriks-Hoogland I, Gamba M, Valido E, Minder B, Chatelan A, Karagounis LG, Ballesteros M, Díaz C, Brach M, Stoyanov J, Diviani N, Rubinelli S, Perret C, Glisic M. Mapping of Dietary Interventions Beneficial in the Prevention of Secondary Health Conditions in Spinal Cord Injured Population: A Systematic Review. J Nutr Health Aging 2023; 27:524-541. [PMID: 37498100 DOI: 10.1007/s12603-023-1937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Individuals with spinal cord injury are at risk of secondary health conditions (SHC) that develop as a consequence of autonomic dysfunction, prolonged oxidative stress and inflammation, and physical inactivity coupled with inadequate energy and nutritional intake. SHC can be debilitating and even life-threatening, and its prevention remains one of the major challenges in the continuum of medical care of aging SCI population. An unhealthy diet is a major driver of inflammation, oxidative stress, and unfavourable metabolic status and may be a practical preventive target to tackle increased SHC risk post-injury. AIMS To provide a catalogue of dietary interventions beneficial in prevention of SHC among individuals with SCI by conducting a systematic review of the literature on dietary interventions and dietary supplementation in promoting health and well-being after the injury. In addition, we aimed to provide a summary of observational studies exploring the association between habitual diet (macro- and micronutrients intake and dietary patterns) and health patterns following the injury. METHOD This review was registered at PROSPERO (University of York) with registration number CRD42022373773. Four medical databases (EMBASE.com, MEDLINE [Ovid], Cochrane CENTRAL, and Web of Science Core Collection) and Google Scholar were searched from inception until 11th July 2022. Studies were included if they were clinical trials or observational studies conducted in adult individuals with SCI and provided information of interest. Based on strength of the study design and risk of bias assessment (using the NIH tool), we classified studies from Level 1 (most reliable studies) to Level 4 (least reliable studies). RESULTS Of 12,313 unique citations, 47 articles (based on 43 original studies) comprising 32 interventional (22 RCTs, 3 NRCT, and 7 pre-post studies) and 11 observational studies (2 cohort studies, 2 case-control, 1 post-intervention follow-up study, and 6 cross-sectional studies) were included in the present systematic review. Twenty studies (46.5%) were classified as Level 1 or 2, indicating high/moderate methodological quality. Based on those studies, dietary strategies including high protein diet, intermittent fasting, balanced diet in combination with physical conditioning and electrical stimulation, and dietary supplementation including alpha-lipoic acid, creatine, vitamin D, and cranberry-derived supplements and probiotics were mapped as the most promising in prevention of SHC among individuals with SCI. CONCLUSIONS To develop timely and effective preventive strategies targeting major SHC (e.g., cardiometabolic diseases, urinary tract infections) in SCI, further research is warranted to confirm the effectiveness of dietary strategies/interventions identified through the current systematic review of the literature.
Collapse
Affiliation(s)
- S Stojic
- PD. Dr Marija Glisic, Swiss Paraplegic Research, Guido A. Zäch Str. 4, 6207 Nottwil, Switzerland, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Murgoci N. The impact of perception regarding therapeutic exercises and dietary changing adherence of subjects known with low back pain. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract: Debates regarding the role of therapeutic exercises and diet as modulators of an anti-inflammatory state occurred in the last years in the medical environment. The syner-gy between moderate-intensity exercise and a proper diet targeting decreasing IL-1 inhib-its the production of the pro-inflammatory cytokine TNF-α, the key regulator of local and systemic inflammation. One of the most important causes of short and long-term disabil-ity in all occupational groups is back pain, impacting the quality of life. Degeneration of the intervertebral disc (IVD) causes low back pain that intensifies with age. Assessment of the Oswestry Disability Index was applied on 23 subjects with low back pain to investigate the degree of disability. Nutrition of IVD, implying therapeutic exercises, and a customized diet may be crucial adjuvants for the rehabilitation process. The appropriate diet and therapeutic exercise approach are meant to evaluate the impact of awareness regarding the possibility of improving health outcomes. In this present study, women have a strong positive Pearson correlation (p<0.05) with minimal (66-70 years) disability and moderate disability (r=1.000, CI =99%). Subjects with moderate disability conditions have “no” intention to implement diet changes and maintain therapeutic exercise adher-ence (r=0.902, CI = 95%). Men (71-75 years, r=0.995, CI =99%) registered a positive strong correlation with maximum deficiency (r=1.000, CI =99%) and “possible no” change in diet and exercise adherence will be applied (r=0.866, CI = 95%). Total disability responders an-swered with a “probable yes” option (r=0.884, CI=95%) but the dependence on their ca-reers is decisive. The education strategy is essential because diet change implementation can cause resistive behavior as well as adherence to exercise therapy. A key to effectively managing the inflammatory state due to different comorbidities is to use the cumulative effects of health professionals' prescriptions. The challenge is to ensure adherence to these actions for each patient.
Keywords: anti-inflammatory, therapeutic exercises, rehabilitation, diet, Oswestry Disability In-dex (ODI), back pain, intervertebral disc, nutrition, perception, disability.
Collapse
Affiliation(s)
- Nicolae Murgoci
- 1 “Dunărea de Jos” University, Faculty of Physical Education and Sports, Department of Individual Sports and Kinetotherapy, 63-65 Gării Street, Galați, Romania
| |
Collapse
|
11
|
Sneij A, Farkas GJ, Carino Mason MR, Gater DR. Nutrition Education to Reduce Metabolic Dysfunction for Spinal Cord Injury: A Module-Based Nutrition Education Guide for Healthcare Providers and Consumers. J Pers Med 2022; 12:2029. [PMID: 36556250 PMCID: PMC9786330 DOI: 10.3390/jpm12122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) results in a high prevalence of neurogenic obesity and metabolic dysfunction. The increased risk for neurogenic obesity and metabolic dysfunction is mainly due to the loss of energy balance because of significantly reduced energy expenditure following SCI. Consequently, excessive energy intake (positive energy balance) leads to adipose tissue accumulation at a rapid rate, resulting in neurogenic obesity, systemic inflammation, and metabolic dysfunction. The purpose of this article is to review the existing literature on nutrition, dietary intake, and nutrition education in persons with SCI as it relates to metabolic dysfunction. The review will highlight the poor dietary intakes of persons with SCI according to authoritative guidelines and the need for nutrition education for health care professionals and consumers. Nutrition education topics are presented in a module-based format with supporting literature. The authors emphasize the role of a diet consisting of low-energy, nutrient-dense, anti-inflammatory foods consistent with the Dietary Guidelines for Americans' MyPlate to effectively achieve energy balance and reduce the risk for neurogenic obesity and metabolic dysfunction in individuals with SCI.
Collapse
Affiliation(s)
- Alicia Sneij
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, P.O. Box 016960 (C-206), Miami, FL 33101, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33101, USA
| | - Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, P.O. Box 016960 (C-206), Miami, FL 33101, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33101, USA
| | - Marisa Renee Carino Mason
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, P.O. Box 016960 (C-206), Miami, FL 33101, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, P.O. Box 016960 (C-206), Miami, FL 33101, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33101, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- South Florida Spinal Cord Injury Model System, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
12
|
Bigford GE, Garshick E. Systemic inflammation after spinal cord injury: A review of biological evidence, related health risks, and potential therapies. Curr Opin Pharmacol 2022; 67:102303. [PMID: 36206621 PMCID: PMC9929918 DOI: 10.1016/j.coph.2022.102303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Individuals with chronic traumatic spinal cord injury (SCI) develop progressive multi-system health problems that result in clinical illness and disability. Systemic inflammation is associated with many of the common medical complications and acquired diseases that accompany chronic SCI, suggesting that it contributes to a number of comorbid pathological conditions. However, many of the mechanisms that promote persistent systemic inflammation and its consequences remain ill-defined. This review describes the significant biological factors that contribute to systemic inflammation, major organ systems affected, health risks, and the potential treatment strategies. We aim to highlight the need for a better understanding of inflammatory processes, and to establish appropriate strategies to address inflammation in SCI.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
14
|
Farkas GJ, Sneij A, McMillan DW, Tiozzo E, Nash MS, Gater DR. Energy expenditure and nutrient intake after spinal cord injury: a comprehensive review and practical recommendations. Br J Nutr 2022; 128:863-887. [PMID: 34551839 PMCID: PMC9389429 DOI: 10.1017/s0007114521003822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many persons with spinal cord injury (SCI) have one or more preventable chronic diseases related to excessive energetic intake and poor eating patterns. Appropriate nutrient consumption relative to need becomes a concern despite authoritative dietary recommendations from around the world. These recommendations were developed for the non-disabled population and do not account for the injury-induced changes in body composition, hypometabolic rate, hormonal dysregulation and nutrition status after SCI. Because evidence-based dietary reference intake values for SCI do not exist, ensuring appropriate consumption of macronutrient and micronutrients for their energy requirements becomes a challenge. In this compressive review, we briefly evaluate aspects of energy balance and appetite control relative to SCI. We report on the evidence regarding energy expenditure, nutrient intake and their relationship after SCI. We compare these data with several established nutritional guidelines from American Heart Association, Australian Dietary Guidelines, Dietary Guidelines for Americans, Institute of Medicine Dietary Reference Intake, Public Health England Government Dietary Recommendations, WHO Healthy Diet and the Paralyzed Veterans of America (PVA) Clinical Practice Guidelines. We also provide practical assessment and nutritional recommendations to facilitate a healthy dietary pattern after SCI. Because of a lack of strong SCI research, there are currently limited dietary recommendations outside of the PVA guidelines that capture the unique nutrient needs after SCI. Future multicentre clinical trials are needed to develop comprehensive, evidence-based dietary reference values specific for persons with SCI across the care continuum that rely on accurate, individual assessment of energy need.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alicia Sneij
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David W. McMillan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eduard Tiozzo
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark S. Nash
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- South Florida Spinal Cord Injury Model System, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- South Florida Spinal Cord Injury Model System, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
15
|
Liang S, Ren Z, Yang G. Cross-sectional and prospective association between internet addiction and risk of fatigue among Chinese college students. Medicine (Baltimore) 2022; 101:e30034. [PMID: 35984184 PMCID: PMC9387967 DOI: 10.1097/md.0000000000030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Severe internet addiction (IA) is associated with a higher risk of musculoskeletal pain, but whether there is a significant prospective association between IA and fatigue is unclear. This study aimed to examine the association between IA and fatigue level among Chinese college students. A cross-sectional (n = 1011) and prospective study (n = 653) was conducted to examine the association between IA and risk of fatigue. IA was measured using Young internet addiction test. Fatigue level was evaluated using the Chalder fatigue scale. Multivariate logistic regression analyses showed a cross-sectional association between IA and the risk of fatigue. The odds ratios (95% CIs) of fatigue for normal, mild, and moderate to severe groups were 1.00 (reference), 1.88 (1.20, 2.95), and 5.60 (3.33, 9.42), respectively (P for trend: <0.001). Similarly, multivariate logistic regression analyses also revealed a significant prospective relationship between IA and the risk of fatigue during the 1-year follow-up period. The odds ratios (95% CIs) of fatigue for normal, mild, and moderate to severe groups were 1.00 (reference), 1.56 (0.67, 3.67), and 3.29 (1.08, 10.04), respectively (P for trend: 0.046). Our findings indicate that IA is positively related to risk of fatigue among Chinese college students. Further interventional studies are needed to explore the causality underlying the effects of IA on fatigue.
Collapse
Affiliation(s)
- Siyu Liang
- School of Physical Education and Chinese Center of Exercise Epidemiology, Northeast Normal University, Changchun, PR China
| | - Zhongyu Ren
- College of Physical Education, Southwest University, Chongqing, PR China
| | - Guang Yang
- School of Physical Education and Chinese Center of Exercise Epidemiology, Northeast Normal University, Changchun, PR China
- *Correspondence: Guang Yang, Chinese Center of Exercise Epidemiology, Northeast Normal University, Changchun 130024, China (e-mail: )
| |
Collapse
|
16
|
Munteanu C, Rotariu M, Turnea M, Ionescu AM, Popescu C, Spinu A, Ionescu EV, Oprea C, Țucmeanu RE, Tătăranu LG, Silișteanu SC, Onose G. Main Cations and Cellular Biology of Traumatic Spinal Cord Injury. Cells 2022; 11:2503. [PMID: 36010579 PMCID: PMC9406880 DOI: 10.3390/cells11162503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury is a life-changing condition with a significant socio-economic impact on patients, their relatives, their caregivers, and even the community. Despite considerable medical advances, there is still a lack of options for the effective treatment of these patients. The major complexity and significant disabling potential of the pathophysiology that spinal cord trauma triggers are the main factors that have led to incremental scientific research on this topic, including trying to describe the molecular and cellular mechanisms that regulate spinal cord repair and regeneration. Scientists have identified various practical approaches to promote cell growth and survival, remyelination, and neuroplasticity in this part of the central nervous system. This review focuses on specific detailed aspects of the involvement of cations in the cell biology of such pathology and on the possibility of repairing damaged spinal cord tissue. In this context, the cellular biology of sodium, potassium, lithium, calcium, and magnesium is essential for understanding the related pathophysiology and also the possibilities to counteract the harmful effects of traumatic events. Lithium, sodium, potassium-monovalent cations-and calcium and magnesium-bivalent cations-can influence many protein-protein interactions, gene transcription, ion channel functions, cellular energy processes-phosphorylation, oxidation-inflammation, etc. For data systematization and synthesis, we used the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) methodology, trying to make, as far as possible, some order in seeing the "big forest" instead of "trees". Although we would have expected a large number of articles to address the topic, we were still surprised to find only 51 unique articles after removing duplicates from the 207 articles initially identified. Our article integrates data on many biochemical processes influenced by cations at the molecular level to understand the real possibilities of therapeutic intervention-which must maintain a very narrow balance in cell ion concentrations. Multimolecular, multi-cellular: neuronal cells, glial cells, non-neuronal cells, but also multi-ionic interactions play an important role in the balance between neuro-degenerative pathophysiological processes and the development of effective neuroprotective strategies. This article emphasizes the need for studying cation dynamics as an important future direction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Aura Spinu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Roxana Elena Țucmeanu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Ligia Gabriela Tătăranu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sînziana Calina Silișteanu
- Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
17
|
Farkas GJ, Burton AM, McMillan DW, Sneij A, Gater DR. The Diagnosis and Management of Cardiometabolic Risk and Cardiometabolic Syndrome after Spinal Cord Injury. J Pers Med 2022; 12:1088. [PMID: 35887592 PMCID: PMC9320035 DOI: 10.3390/jpm12071088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Individuals with spinal cord injuries (SCI) commonly present with component risk factors for cardiometabolic risk and combined risk factors for cardiometabolic syndrome (CMS). These primary risk factors include obesity, dyslipidemia, dysglycemia/insulin resistance, and hypertension. Commonly referred to as "silent killers", cardiometabolic risk and CMS increase the threat of cardiovascular disease, a leading cause of death after SCI. This narrative review will examine current data and the etiopathogenesis of cardiometabolic risk, CMS, and cardiovascular disease associated with SCI, focusing on pivotal research on cardiometabolic sequelae from the last five years. The review will also provide current diagnosis and surveillance criteria for cardiometabolic disorders after SCI, a novel obesity classification system based on percent total body fat, and lifestyle management strategies to improve cardiometabolic health.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Miami Miller, Miami, FL 33136, USA; (A.S.); (D.R.G.J.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA;
| | - Adam M. Burton
- School of Medicine, University of Miami Miller, Miami, FL 33136, USA;
| | - David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA;
- The Miami Project to Cure Paralysis, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Alicia Sneij
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Miami Miller, Miami, FL 33136, USA; (A.S.); (D.R.G.J.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA;
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Miami Miller, Miami, FL 33136, USA; (A.S.); (D.R.G.J.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA;
- School of Medicine, University of Miami Miller, Miami, FL 33136, USA;
| |
Collapse
|
18
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
19
|
Li J, Demirel A, Azuero A, Womack ED, Kroeger EN, McLain A, Yarar-Fisher C. Limited Association between the Total Healthy Eating Index-2015 Score and Cardiovascular Risk Factors in Individuals with Long-Standing Spinal Cord Injury: An Exploratory Study: An Exploratory Study. J Acad Nutr Diet 2021; 121:2260-2266. [PMID: 34016562 DOI: 10.1016/j.jand.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The healthy eating index-2015 (HEI-2015) reflects diet quality in reference to the 2015-2020 Dietary Guidelines for Americans (DGA). Little is known regarding its application in individuals with chronic spinal cord injury (SCI). OBJECTIVE To explore the relationship between diet quality as assessed by the HEI-2015 and cardiovascular risk factors among individuals with chronic SCI. DESIGN This is a cross-sectional analysis of baseline data collected from August 2017 through November 2019 for an interventional study that evaluates the effects of a high-protein/low-carbohydrate diet on cardiovascular risk factors in individuals with chronic SCI at the University of Alabama at Birmingham. PARTICIPANTS/SETTING Twenty-four free-living adults with SCI (mean age, 45 ± 12 y; 8F/16M, level of injury: nine cervical, 15 thoracic; mean duration of injury: 20 ± 13 y) were included. MAIN OUTCOME MEASURES Participants underwent a 2-hour oral glucose tolerance test (OGTT) and a dual-energy x-ray absorptiometry scan. Dietary intake was assessed by three, 24-hour multiple-pass dietary recalls to calculate the HEI-2015 using the simple HEI scoring algorithm method. DATA ANALYSIS Multiple linear regression analyses were performed to predict indices of lipid metabolism and glucose homeostasis and C-reactive protein (CRP) from the HEI-2015. Principal component analysis was used to reduce the number of covariates (level of injury, sex, and body fat percentage). RESULTS On average, participants' diets were of low quality (HEI-2015, 47.2 ± 10.8). The regression models for fasting glucose (FG), cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and CRP had moderate to large effect sizes (adjusted R2 ≥ 13%), suggesting good explanatory abilities of the predictors. Small or limited effect sizes were observed for glucose tolerance, fasting insulin, triglycerides, and Matsuda index (adjusted R2 < 13%). The HEI-2015 accounted for a moderate amount of variation in FG (partial omega-squared, ωP2 = 13%). Each 10-point HEI-2015 score increase was associated with a 3.3-mg/dL decrease in FG concentrations. The HEI-2015 accounted for a limited amount of variation in other indices (ωP2 < 5%). CONCLUSIONS Among participants with SCI, higher conformance to the 2015-2020 DGA was 1) moderately associated with better FG homeostasis; and 2) trivially associated with other cardiovascular risk factors. Because of the small sample size, these conclusions cannot be extrapolated beyond the study sample. Future larger studies are warranted to better understand the relationship between diet quality and cardiovascular disease risks in this population.
Collapse
|
20
|
Flueck JL, Parnell JA. Protein Considerations for Athletes With a Spinal Cord Injury. Front Nutr 2021; 8:652441. [PMID: 33928111 PMCID: PMC8076503 DOI: 10.3389/fnut.2021.652441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
Athlete participation in the Paralympic games is steadily increasing; prompting research focused on the unique needs of this population. While the Paralympic Games includes a diversity of athletes, athletes with a spinal cord injury (PARA-SCI) represent a subgroup that requires specialized recommendations. Nutritional guidelines designed to optimize performance, in the context of the neurological impairments, are required. This narrative review summarizes the current literature regarding the importance of dietary protein for optimal health and performance. Factors with the potential to affect protein needs in PARA-SCI including loss of active muscle mass, reduced energy expenditure, and secondary complications are examined in detail. Furthermore, we analyze protein intakes in PARA-SCI from the available research to provide context around current practices and trends. In conclusion, we make the case that protein recommendations for able-bodied athletes may not be directly transferable to PARA-SCI. Consequently, PARA-SCI need their own guidelines to maximize performance and ensure long-term health.
Collapse
Affiliation(s)
| | - Jill A Parnell
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| |
Collapse
|
21
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
22
|
Bigford GE, Szeto A, Kimball J, Herderick EE, Mendez AJ, Nash MS. Cardiometabolic risks and atherosclerotic disease in ApoE knockout mice: Effect of spinal cord injury and Salsalate anti-inflammatory pharmacotherapy. PLoS One 2021; 16:e0246601. [PMID: 33626069 PMCID: PMC7904230 DOI: 10.1371/journal.pone.0246601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To test in mice with a double mutation of the ApoE gene (ApoE-/-) whether spinal cord injury (SCI) hastens the native trajectory of, and established component risks for, atherosclerotic disease (AD), and whether Salsalate anti-inflammatory pharmacotherapy attenuates the impact of SCI. METHODS ApoE-/- mice were anesthetized and underwent a T9 laminectomy. Exposed spinal cords were given a contusion injury (70 k-dynes). Sham animals underwent all surgical procedures, excluding injury. Injured animals were randomized to 2 groups: SCI or SCI+Salsalate [120 mg/Kg/day i.p.]. Mice were serially sacrificed at 20-, 24-, and 28-weeks post-SCI, and body mass was recorded. At sacrifice, heart and aorta were harvested intact, fixed in 10% buffered formalin, cleaned and cut longitudinally for en face preparation. The aortic tree was stained with oil-red-O (ORO). AD lesion histomorphometry was calculated from the proportional area of ORO. Plasma total cholesterol, triglycerides and proatherogenic inflammatory cytokines (PAIC's) were analyzed. RESULTS AD lesion in the aortic arch progressively increased in ApoE-/-, significant at 24- and 28-weeks. AD in SCI is significantly greater at 24- and 28-weeks compared to time-controlled ApoE-/-. Salsalate treatment attenuates the SCI-induced increase at these time points. Body mass in all SCI groups are significantly reduced compared to time-controlled ApoE-/-. Cholesterol and triglycerides are significantly higher with SCI by 24- and 28-weeks, compared to ApoE-/-, and Salsalate reduces the SCI-induced effect on cholesterol. PAIC's interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-C motif) ligand 5 (CCL-5) are significantly greater with SCI compared to ApoE-/- at varying timepoints. Salsalate confers a marginal reducing effect on PAIC's by 28-weeks compared to SCI. Regression models determine that each PAIC is a significant and positive predictor of lesion. (p's <0.05). CONCLUSIONS SCI accelerates aortic AD and associated risk factors, and anti-inflammatory treatment may attenuate the impact of SCI on AD outcomes. PAIC's IL-1β, IL-6, TNFα, MCP-1, and CCL-5 may be effective predictors of AD.
Collapse
Affiliation(s)
- Gregory E. Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Angela Szeto
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - John Kimball
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | | | - Armando J. Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mark S. Nash
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Physical Therapy, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
23
|
Jiang J, Wang G. Matrine protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via upregulation of miR-9. PHARMACEUTICAL BIOLOGY 2020; 58:314-320. [PMID: 32297823 PMCID: PMC7178860 DOI: 10.1080/13880209.2020.1719165] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Context: Matrine is a well-known anti-inflammatory quinolizidine alkaloid derived from leguminous plant Sophora flavescens Ait. (Leguminosae).Objective: This study was designed to uncover the potential application of matrine in treating spinal cord injury (SCI).Materials and methods: Neuron-like PC12 cells in experimental groups were pre-treated with/without matrine (200 μM) for 24 h and then stimulated by lipopolysaccharide (LPS, 5 μg/mL) for 12 h. PC12 cells in control group were cultured in complete medium. CCK-8 assay, flow cytometry, qRT-PCR, western blot and ELISA were performed to evaluate cell damage. Moreover, after cells were transfected with miR-9 inhibitor for 48 h, above indicators were tested again. qRT-PCR and western blot were also conducted to uncover the downstream effectors and signalling pathways for matrine.Results: LPS (5 μg/mL) decreased cell viability about 50%. Matrine (200 μM) decreased cell viability about 0%, 13.8% and 30% at 24 h, 48 h and 72 h, respectively. The loss of viability, stimulation of apoptosis, and release of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) evoked by LPS were attenuated by the pre-treatment of matrine partly. Meanwhile, LPS reduced miR-9 expression about 60%, but matrine completely reversed LPS-decreased miR-9 level. By silencing miR-9 expression, the protective properties of matrine towards PC12 cells were impeded. Besides, matrine inhibited the activation of JNK and NF-κB pathways even under the condition of LPS. And the impact of matrine on the signalling were attenuated by miR-9 silencing.Discussion and Conclusion: This paper provided in vitro evidence that matrine was able to protect PC12 cells against LPS-evoked damage. The neuroprotective properties of matrine may be due to its regulation of miR-9 expression as well as JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Jinsong Jiang
- Department of Sports Medicine, Yuncheng Central Hospital, Yuncheng, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 2020; 226:57-69. [PMID: 32827705 PMCID: PMC7438210 DOI: 10.1016/j.trsl.2020.08.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the greatest worldwide pandemic since the 1918 flu. The consequences of the coronavirus disease 2019 (COVID-19) are devastating and represent the current major public health issue across the globe. At the onset, SARS-CoV-2 primarily attacks the respiratory system as it represents the main point of entry in the host, but it also can affect multiple organs. Although most of the patients do not present symptoms or are mildly symptomatic, some people infected with SARS-CoV-2 that experience more severe multiorgan dysfunction. The severity of COVID-19 is typically combined with a set of comorbidities such as hypertension, diabetes, obesity, and/or advanced age that seriously exacerbates the consequences of the infection. Also, SARS-CoV-2 can cause gastrointestinal symptoms, such as vomiting, diarrhea, or abdominal pain during the early phases of the disease. Intestinal dysfunction induces changes in intestinal microbes, and an increase in inflammatory cytokines. Thus, diagnosing gastrointestinal symptoms that precede respiratory problems during COVID-19 may be necessary for improved early detection and treatment. Uncovering the composition of the microbiota and its metabolic products in the context of COVID-19 can help determine novel biomarkers of the disease and help identify new therapeutic targets. Elucidating changes to the microbiome as reliable biomarkers in the context of COVID-19 represent an overlooked piece of the disease puzzle and requires further investigation.
Collapse
Key Words
- ards, acute respiratory distress syndrome
- ace2, angiotensin-converting enzyme ii
- cns, central nervous system
- covid-19, coronavirus disease 2019
- cpr, c-reactive protein
- h1n1, influenza a virus
- il, interleukin
- mers, middle east respiratory syndrome
- prs, proteomic risk score
- sars, severe acute respiratory syndrome
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- scfa, short-chain fatty acids
- ras, renin-angiotensin system
- ros, reactive oxygen species
- rt-pcr, reverse transcription-polymerase chain reaction
- tmprss2, transmembrane serine protease 2
- tnfα, tumor necrosis factor alpha
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas; Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York.
| |
Collapse
|
25
|
Bernardi M, Fedullo AL, Bernardi E, Munzi D, Peluso I, Myers J, Lista FR, Sciarra T. Diet in neurogenic bowel management: A viewpoint on spinal cord injury. World J Gastroenterol 2020; 26:2479-2497. [PMID: 32523306 PMCID: PMC7265150 DOI: 10.3748/wjg.v26.i20.2479] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to offer dietary advice for individuals with spinal cord injury (SCI) and neurogenic bowel dysfunction. With this in mind, we consider health conditions that are dependent on the level of lesion including skeletal muscle atrophy, autonomic dysreflexia and neurogenic bladder. In addition, SCI is often associated with a sedentary lifestyle, which increases risk for osteoporosis and diseases associated with chronic low-grade inflammation, including cardiovascular and chronic kidney diseases. The Mediterranean diet, along with exercise and dietary supplements, has been suggested as an anti-inflammatory intervention in individuals with SCI. However, individuals with chronic SCI have a daily intake of whole fruit, vegetables and whole grains lower than the recommended dietary allowance for the general population. Some studies have reported an increase in neurogenic bowel dysfunction symptoms after high fiber intake; therefore, this finding could explain the low consumption of plant foods. Low consumption of fibre induces dysbiosis, which is associated with both endotoxemia and inflammation. Dysbiosis can be reduced by exercise and diet in individuals with SCI. Therefore, to summarize our viewpoint, we developed a Mediterranean diet-based diet and exercise pyramid to integrate nutritional recommendations and exercise guidelines. Nutritional guidelines come from previously suggested recommendations for military veterans with disabilities and individuals with SCI, chronic kidney diseases, chronic pain and irritable bowel syndrome. We also considered the recent exercise guidelines and position stands for adults with SCI to improve muscle strength, flexibility and cardiorespiratory fitness and to obtain cardiometabolic benefits. Finally, dietary advice for Paralympic athletes is suggested.
Collapse
Affiliation(s)
- Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy
- Italian Paralympic Committee, Rome 00191, Italy
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Anna Lucia Fedullo
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70121, Italy
| | - Diego Munzi
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome 00178, Italy
| | - Jonathan Myers
- VA Palo Alto Health Care System and Stanford University, Cardiology Division, Palo Alto, CA 94025, United States
| | | | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| |
Collapse
|