1
|
Jafari E, Descollonges M, Deley G, Di Marco J, Popovic-Maneski L, Metani A. Comfort, consistency, and efficiency of garments with textile electrodes versus hydrogel electrodes for neuromuscular electrical stimulation in a randomized crossover trial. Sci Rep 2025; 15:6869. [PMID: 40011562 DOI: 10.1038/s41598-025-91452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
The efficacy and comfort of neuromuscular electrical stimulation (NMES) largely depend on the type of electrodes used. Traditional self-adhesive hydrogel electrodes, while effective, pose limitations in terms of wearability, skin compatibility, and reusability. This randomized crossover trial investigates the performance of a specific textile electrode integrated into garments for NMES of lower extremities, focusing on their potential rehabilitative applications for patients with neurological disorders such as stroke, multiple sclerosis (MS), and spinal cord injury (SCI). In this randomized crossover design, ten healthy subjects participated in the study. Each subject performed isometric knee extension exercises using both textile and hydrogel electrodes in random order. The electrodes were compared in terms of comfort, temporal consistency, stimulation efficiency, and electrical impedance under isometric conditions. Our findings revealed no significant difference between the two types of electrodes across all evaluated parameters. Textile electrodes, used after applying moisturizing lotion to enhance the electrode-skin interface, demonstrated comparable levels of comfort, consistency, and efficiency to hydrogel electrodes. The equivalence of textile and hydrogel electrodes, coupled with the advantages of washability and reusability, positions textile electrodes as a promising alternative for NMES applications, particularly in rehabilitation settings.
Collapse
Affiliation(s)
- Ehsan Jafari
- Université de Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
- Kurage, 69007, Lyon, France.
| | - Maël Descollonges
- Kurage, 69007, Lyon, France
- INSERM UMR 1093 - Laboratoire CAPS, UFR des Sciences du Sport, Université de Bourgogne, 21000, Dijon, France
| | - Gaëlle Deley
- INSERM UMR 1093 - Laboratoire CAPS, UFR des Sciences du Sport, Université de Bourgogne, 21000, Dijon, France
| | - Julie Di Marco
- Center of Rehabilitation Val Rosay, Saint Didier au Mont d'or, Lyon, France
| | - Lana Popovic-Maneski
- Kurage, 69007, Lyon, France
- Institute of Technical Sciences of SASA, Knez, Mihailova 35/IV 11000, Belgrade, Serbia
| | - Amine Metani
- Université de Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342, Lyon, France
- Kurage, 69007, Lyon, France
| |
Collapse
|
2
|
Mitchell D, Fuller A, Snelling EP, Tattersall GJ, Hetem RS, Maloney SK. Revisiting concepts of thermal physiology: understanding negative feedback and set-point in mammals, birds, and lizards. Biol Rev Camb Philos Soc 2025. [PMID: 39912218 DOI: 10.1111/brv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The thermoregulatory system of homeothermic endotherms operates to attain thermal equilibrium, that is no net loss or gain of heat, where possible, under a thermal challenge, and not to attain a set-point or any other target body temperature. The concept of a set-point in homeothermic temperature regulation has been widely misinterpreted, resulting in such confusion that some thermoregulation specialists have recommended that it be abandoned. But the set-point concept has enjoyed a resurgence in a different domain, lizard microclimate selection. We review the principles of thermoregulation in homeotherms, endorse a negative feedback system with independent set-points for individual thermo-effectors as its core mechanism, and address the misconceptions about homeothermic set-point. We also explore the concept of set-point range in lizard microclimate selection and conclude that there is substantial convergence between that concept and the set-points of homeothermic thermo-effectors, as thresholds. In neither homeothermic nor lizard thermoregulation is the concept of a unitary set-point appropriate. We review the problems of measuring the set-points for lizard microclimate selection. We do not believe that the set-point concept in thermoregulation should be abandoned just because it has been misinterpreted by some users. It is a valid concept, identifying the threshold body temperatures at which regulatory thermo-effectors will be activated, to aid in attaining thermal equilibrium.
Collapse
Affiliation(s)
- Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, WA, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, L2S 3A1, Canada
| | - Robyn S Hetem
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, University of the Witwatersrand Medical School, Johannesburg, 2193, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Perth, 6009, WA, Australia
| |
Collapse
|
3
|
Rempel L, Sachdeva R, Krassioukov AV. Making the Invisible Visible: Understanding Autonomic Dysfunctions Following Spinal Cord Injury. Phys Med Rehabil Clin N Am 2025; 36:17-32. [PMID: 39567034 DOI: 10.1016/j.pmr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Autonomic dysfunctions are a major challenge to individuals following spinal cord injury. Despite this, these consequences receive far less attention compared with motor recovery. This review will highlight the major autonomic dysfunctions following SCI predominantly based on our present understanding of the anatomy and physiology of autonomic control and available clinical data.
Collapse
Affiliation(s)
- Lucas Rempel
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Trbovich M, Wu Y, Koek W, Wecht J, Kellogg D. Elucidating mechanisms of attenuated skin vasodilation during passive heat stress in persons with spinal cord injury. J Spinal Cord Med 2024; 47:765-774. [PMID: 37158753 PMCID: PMC11378667 DOI: 10.1080/10790268.2023.2203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Persons with spinal cord injury (SCI) are unable to efficiently dissipate heat via thermoregulatory vasodilation as efficiently as able-bodied persons during whole body passive heat stress (PHS). Skin blood flow (SkBF) is controlled by dual sympathetic vasomotor systems: noradrenergic vasoconstrictor (VC) nerves and cholinergic vasodilator (VD) nerves. Thus, impaired vasodilation could result from inappropriate increases in noradrenergic VC tone that compete with cholinergic vasodilation or diminished cholinergic tone. To address this issue, we used bretylium (BR) which selectively blocks neural release of norepinephrine, thereby reducing noradrenergic VC tone. If impaired vasodilation during PHS is due to inappropriate increase in VC tone, BR treatment will improve SkBF responses during PHS. DESIGN Prospective interventional trial. SETTING laboratory. PARTICIPANTS 22 veterans with SCI. INTERVENTIONS Skin surface areas with previously defined intact vs. impaired thermoregulatory vasodilation were treated with BR iontophoresis with a nearby untreated site serving as control/CON. Participants underwent PHS until core temperature rose 1°C. OUTCOME MEASURES Laser doppler flowmeters measured SkBF over BR and CON sites in areas with impaired and intact thermoregulatory vasodilation. Cutaneous vascular conductance (CVC) was calculated for all sites. Peak-PHS CVC was normalized to baseline (BL): (CVC peak-PHS/CVC BL) to quantify SkBF change. RESULTS CVC rise in BR sites was significantly less than CON sites in areas with intact (P = 0.03) and impaired (P = 0.04) thermoregulatory vasodilation. CONCLUSION Cutaneous blockade of neural release of noradrenergic neurotransmitters affecting vasoconstriction did not enhance thermoregulatory vasodilation during PHS in persons with SCI; rather BR attenuated the response. Cutaneous blockade of neural release of noradrenergic neurotransmitters affecting vasoconstriction did not restore cutaneous active vasodilation during PHS in persons with SCI.
Collapse
Affiliation(s)
- Michelle Trbovich
- Department of Rehabilitation Medicine, University of Texas Health Science Center, San Antonio
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Yubo Wu
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Wouker Koek
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, USA
| | - Jill Wecht
- James J Peters Department of Veteran's Affairs Medical Center, Bronx, New York, USA
| | - Dean Kellogg
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center and Dept of Medicine, University of Texas Health Science Center, San Antonio, USA
- Department of Medicine, University of TX Health Science Center, San Antonio, USA
| |
Collapse
|
5
|
Lôbo ILB, Wanner SP, Guerreiro RDC, Coelho BLP, Coimbra FEDS, Martins MEM, Duarte LCDA, Stieler E, de Mello MT, Silva A. Effects of two external cooling strategies on physiological and perceptual responses of athletes with tetraplegia during and after exercise in the heat. J Therm Biol 2024; 123:103896. [PMID: 38906048 DOI: 10.1016/j.jtherbio.2024.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Athletes with tetraplegia may experience marked hyperthermia while exercising under environmental heat stress due to their limited ability to dissipate heat through evaporative means. This study investigated the effectiveness of two external cooling strategies (i.e., spraying water onto the body surface or using a cooling vest) on physiological and perceptual variables in tetraplegic athletes during and after an aerobic exercise session in a hot environment. Nine male wheelchair rugby players performed an incremental test to determine their maximum aerobic power output. After that, they were subjected to three experimental trials in a counter-balanced order: control (CON, no body cooling), cooling vest (CV), and water spraying (WS). During these trials, they performed 30 min of a submaximal exercise (at 65% of their maximum aerobic power) inside an environmental chamber set to maintain the dry-bulb temperature at 32 °C. The following variables were recorded at regular intervals during the exercise and for an additional 30 min following the exertion (i.e., post-exercise recovery) with the participants also exposed to 32 °C: body core temperature (TCORE), skin temperature (TSKIN), heart rate (HR), rating of perceived exertion (RPE), thermal comfort (TC), and thermal sensation (TS). While exercising in CON conditions, the tetraplegic athletes had the expected increases in TCORE, TSKIN, HR, RPE, and TC and TS scores. HR, TC, and TS decreased gradually toward pre-exercise values after the exercise, whereas TCORE and TSKIN remained stable at higher values. Using a cooling vest decreased the temperature measured only on the chest and reduced the scores of RPE, TC, and TS during and after exercise but did not influence the other physiological responses of the tetraplegic athletes. In contrast, spraying water onto the athletes' body surface attenuated the exercise-induced increase in TSKIN, led to lower HR values during recovery, and was also associated with better perception during and after exercise. We conclude that water spraying is more effective than the cooling vest in attenuating physiological strain induced by exercise-heat stress. However, although both external cooling strategies do not influence exercise hyperthermia, they improve the athletes' thermal perception and reduce perceived exertion.
Collapse
Affiliation(s)
- Ingrid Ludimila Bastos Lôbo
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil; Departamento de Ciências do Movimento Humano of the Universidade do Estado de Minas Gerais (DCMH/UEMG), Ibirité, MG, Brazil.
| | - Samuel Penna Wanner
- Laboratório de Fisiologia do Exercício of the Universidade Federal de Minas Gerais (LAFISE/UFMG), Belo Horizonte, MG, Brazil.
| | - Renato de Carvalho Guerreiro
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Bruno Lourenço Pinto Coelho
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | | | - Maria Eduarda Machado Martins
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Larissa Cristina de Abreu Duarte
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Eduardo Stieler
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Marco Túlio de Mello
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| | - Andressa Silva
- Centro de Estudos em Psicobiologia e Exercício of the Universidade Federal de Minas Gerais (CEPE/UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Vasquez LO, Lee I, Bart J, Barton CR, Chui J, Tascione O, Kumar NS, Cirnigliaro CM, Lombard AT, Kirshblum SC, Bauman WA, Handrakis JP. Self-reported effects of warm seasonal temperatures in persons with spinal cord injury. J Spinal Cord Med 2024; 47:395-403. [PMID: 37010833 PMCID: PMC11044722 DOI: 10.1080/10790268.2023.2194962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
OBJECTIVE Spinal cord injury (SCI) interrupts motor, sensory, and autonomic pathways, impairing mobility and increasing heat storage during warm seasonal temperatures due to compromised autonomic control of vasodilation and sweating and recognition of body temperature. Thus, persons with SCI are more vulnerable to hyperthermia and its adverse effects. However, information regarding how persons with SCI perceive warmer seasons and whether thermal discomfort during warmer seasons restricts routine activities remains anecdotal. DESIGN Cross-sectional, self-report surveys. SETTING VA Medical Center and Kessler Institute for Rehabilitation. PARTICIPANTS Three groups of 50 participants each: tetraplegia, paraplegia, and matched non-SCI controls. OUTCOME MEASURES Tetraplegia, paraplegia, and control groups responded "yes" or "no" when asked whether warm seasonal temperatures adversely affected comfort or participation in routine activities. RESULTS The percentage of responses differed among tetraplegia, paraplegia, and control groups when asked if they required ≥20 min to cool down once overheated (44 vs. 20 vs. 12%; X2 = 14.7, P < 0.001), whether heat-related discomfort limited their ability to go outside (62 vs. 34 vs. 32%; X2 = 11.5, P = 0.003), if they needed to use a water-mister because of the heat (70 vs. 44 vs. 42%; X2 = 9.8, P = 0.008), and if heat-related discomfort limited participation in social activities (40 vs. 20 vs. 16%; X2 = 8.7, P = 0.01). CONCLUSION Warmer seasonal temperatures had a greater negative impact on reported comfort and daily activities of persons with SCI than non-SCI controls. Those with tetraplegia were most adversely affected. Our findings warrant increasing awareness and identifying interventions to address the vulnerability of persons with SCI to hyperthermia.
Collapse
Affiliation(s)
- Luis Ortiz Vasquez
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Ingrid Lee
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Jessica Bart
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Physical Therapy, School of Health Professions, New York Institute of Technology, Old Westbury, New York, USA
| | - Christian R. Barton
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Physical Therapy, School of Health Professions, New York Institute of Technology, Old Westbury, New York, USA
| | - Jennifer Chui
- Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oriana Tascione
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Nina S. Kumar
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Christopher M. Cirnigliaro
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Alex T. Lombard
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Steven C. Kirshblum
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
- Kessler Foundation, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - William A. Bauman
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John P. Handrakis
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Physical Therapy, School of Health Professions, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
7
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Wecht JM, Weir JP, Peters CG, Weber E, Wylie GR, Chiaravalloti NC. Autonomic Cardiovascular Control, Psychological Well-Being, and Cognitive Performance in People With Spinal Cord Injury. J Neurotrauma 2023; 40:2610-2620. [PMID: 37212256 DOI: 10.1089/neu.2022.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
PURPOSE To examine associations between parameters of psychological well-being, injury characteristics, cardiovascular autonomic nervous system (ANS) control, and cognitive performance in persons with spinal cord injury (SCI) compared with age-matched uninjured controls. This is an observational, cross-sectional study including a total of 94 participants (52 with SCI and 42 uninjured controls: UIC). Cardiovascular ANS responses were continuously monitored at rest and during administration of the Paced Auditory Serial Addition Test (PASAT). Self-report scores on the SCI-Quality of Life questionnaires are reported for depression, anxiety, fatigue, resilience, and positive affect. Participants with SCI performed significantly more poorly on the PASAT compared with the uninjured controls. Although not statistically significant, participants with SCI tended to report more psychological distress and less well-being than the uninjured controls. In addition, when compared with uninjured controls, the cardiovascular ANS responses to testing were significantly altered in participants with SCI; however, these responses to testing did not predict PASAT performance. Self-reported levels of anxiety were significantly related to PASAT score in the SCI group, but there was no significant relationship between PASAT and the other indices of SCI-Quality of Life. Future investigations should more closely examine the relationship among cardiovascular ANS impairments, psychological disorders, and cognitive dysfunction to better elucidate the underpinnings of these deficits and to guide interventions aimed at improving physiological, psychological, and cognitive health after SCI. Tetraplegia, paraplegia, blood pressure variability, cognitive, mood.
Collapse
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Bronx, New York, USA
- Bronx Veterans Medical Research Foundation, Bronx, New York, USA
- Department of Medicine, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, the Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Science, University of Kansas, Lawrence, Kansas, USA
| | - Caitlyn G Peters
- James J Peters VA Medical Center, Bronx, New York, USA
- Kessler Foundation, West Orange, New Jersey, USA
| | - Erica Weber
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Glenn R Wylie
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| | - Nancy C Chiaravalloti
- Kessler Foundation, West Orange, New Jersey, USA
- Rutgers-NJ Medical School, Department of Physical Medicine and Rehabilitation, Newark, New Jersey, USA
| |
Collapse
|
9
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Sarafis ZK, Squair JW, Barak OF, Coombs GB, Soriano JE, Larkin-Kaiser KA, Lee AHX, Hansen A, Vodopic M, Romac R, Grant C, Charbonneau R, Mijacika T, Krassioukov AV, Ainslie PN, Dujic Z, Phillips AA. Common carotid artery responses to the cold-pressor test are impaired in individuals with cervical spinal cord injury. Am J Physiol Heart Circ Physiol 2022; 323:H1311-H1322. [PMID: 36367686 DOI: 10.1152/ajpheart.00261.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.
Collapse
Affiliation(s)
- Zoe K Sarafis
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jan Elaine Soriano
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kelly A Larkin-Kaiser
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Maro Vodopic
- Department of Neurology, General Hospital, Dubrovnik, Croatia
| | - Rinaldo Romac
- Department of Neurology, Clinical Hospital Center, Split, Croatia
| | - Christopher Grant
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Charbonneau
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,GF Strong Rehabilitation Centre, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Aaron A Phillips
- RESTORE.network, Departments of Physiology and Pharmacology, Cardiac Sciences and Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Grossmann F, Flueck JL, Roelands B, Meeusen R, Mason B, Perret C. Characteristics of Official Wheelchair Basketball Games in Hot and Temperate Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031250. [PMID: 35162273 PMCID: PMC8835511 DOI: 10.3390/ijerph19031250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023]
Abstract
This study compared performance parameters of two wheelchair basketball games under hot (30.3 °C, 52% relative humidity) and temperate (21.6 °C, 30% relative humidity) environmental conditions and described the characteristics of wheelchair basketball. Eight wheelchair basketball players from two teams were monitored during two games using an indoor position tracking system. Total distance, mean- and peak-speed, playing-time, number of sprints, sprints per minute, heart rate and rate of perceived exertion were recorded. Additionally, athletes with a lesion level above and below T6 were compared. No measured parameter differed between the games. Across quarters (Q) mean velocity (m/s) (Q1: 1.01; Q2: 1.10; Q3: 1.18; Q4: 1.06; p < 0.001) and sprints per minute (Q1: 16; Q2: 14; Q3: 23; Q4: 14; p = 0.033) differed significantly, independent of the conditions. Descriptive statistics did not reveal differences between the groups with a lesion level below or above T6. In the present study, hot environmental conditions seemed not to have an impact on activity parameters of wheelchair basketball players. It was speculated that the game intensity and therefore metabolic heat production was too low; consequently, the athletes had a sufficient heat loss to prevent a decrease in performance during the play in hot conditions.
Collapse
Affiliation(s)
- Fabian Grossmann
- Swiss Paraplegic Centre, Sports Medicine, 6207 Nottwil, Switzerland; (J.L.F.); (C.P.)
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (B.R.); (R.M.)
- Correspondence:
| | - Joelle Leonie Flueck
- Swiss Paraplegic Centre, Sports Medicine, 6207 Nottwil, Switzerland; (J.L.F.); (C.P.)
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (B.R.); (R.M.)
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (B.R.); (R.M.)
| | - Barry Mason
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| | - Claudio Perret
- Swiss Paraplegic Centre, Sports Medicine, 6207 Nottwil, Switzerland; (J.L.F.); (C.P.)
| |
Collapse
|
12
|
Wecht JM, Krassioukov AV, Alexander M, Handrakis JP, McKenna SL, Kennelly M, Trbovich M, Biering-Sorensen F, Burns S, Elliott SL, Graves D, Hamer J, Krogh K, Linsenmeyer TA, Liu N, Hagen EM, Phillips AA, Previnaire JG, Rodriguez GM, Slocum C, Wilson JR. International Standards to document Autonomic Function following SCI (ISAFSCI): Second Edition. Top Spinal Cord Inj Rehabil 2021; 27:23-49. [PMID: 34108833 DOI: 10.46292/sci2702-23] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Bronx, NY.,Bronx Veterans Medical Research Foundation, Bronx, NY.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD) and Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia.,Spinal Cord Program, GF Strong Rehabilitation Centre, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.,President, American Spinal Injury Association (ASIA)
| | - Maralee Alexander
- Sustain Our Abilities, Birmingham, AL.,University of Alabama at Birmingham School of Medicine, Birmingham, AL.,Spaulding Rehabilitation Hospital, Charlestown, MA
| | - John P Handrakis
- James J Peters VA Medical Center, Bronx, NY.,Bronx Veterans Medical Research Foundation, Bronx, NY.,New York Institute of Technology, Department of Physical Therapy, School of Health Professions, Old Westbury, NY
| | - Stephen L McKenna
- Department of Physical Medicine and Rehabilitation, Santa Clara Valley Medical Center, San Jose, CA.,Department of Neurosurgery, Stanford University, Stanford, CA
| | - Michael Kennelly
- James J Peters VA Medical Center, Bronx, NY.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY.,International Collaboration on Repair Discoveries (ICORD) and Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia
| | - Michele Trbovich
- South Texas Veterans Health Care System, San Antonio, TX.,Department of Rehabilitation Medicine, University of Texas Health San Antonio
| | - Fin Biering-Sorensen
- Department for Spinal Cord Injuries, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Stephen Burns
- Spinal Cord Injury Service, VA Puget Sound Health Care System, Seattle, WA.,Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA
| | - Stacy L Elliott
- International Collaboration on Repair Discoveries (ICORD) and Division of Sexual Medicine, Departments of Psychiatry and Urologic Sciences, Faculty of Medicine, University of British Columbia
| | - Daniel Graves
- College of Rehabilitation Sciences, Department of Rehabilitation Medicine, Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA
| | | | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Todd A Linsenmeyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Department of Surgery ( Division of Urology), Rutgers New Jersey Medical School, Newark, NJ.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Ellen Merete Hagen
- National Hospital for Neurology and Neurosurgery, Queens Square, UCLH, London, UK.,Institute of Neurology, University College London, London, UK
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Hotchkiss Brain Institute, University of Calgary.,Cardiovascular Institute, Cumming School of Medicine, University of Calgary
| | | | - Gianna M Rodriguez
- Physical Medicine and Rehabilitation Department, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Chloe Slocum
- Spaulding Rehabilitation Hospital, Charlestown, MA.,Harvard Medical School Department of Physical Medicine and Rehabilitation, Boston, MA
| | - James R Wilson
- Department of Physical Medicine and Rehabilitation, MetroHealth Rehabilitation Institute, Cleveland, OH.,Department of Physical Medicine and Rehabilitation, Case Western Reserve University-SOM, Cleveland, OH
| |
Collapse
|
13
|
Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 2021; 11:514181. [PMID: 33536992 PMCID: PMC7848788 DOI: 10.3389/fneur.2020.514181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic “motor level.” Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.
Collapse
Affiliation(s)
- Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Francisco D Benavides
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Pedro M Saraiva
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Kimberly D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,Miller School of Medicine, The Interdisciplinary Stem Cell Institute, The University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| |
Collapse
|