1
|
Bouhaddou N, Mabrouk M, Atifi F, Bouyahya A, Zaid Y. The link between BDNF and platelets in neurological disorders. Heliyon 2024; 10:e39278. [PMID: 39568824 PMCID: PMC11577193 DOI: 10.1016/j.heliyon.2024.e39278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Platelets are considered one of the most important reservoirs not only of growth factors, but also of neurotrophic factors that could contribute to the repair of vascular lesions and the prevention of neurological deterioration. Among these factors, Brain-Derived Neurotrophic Factor (BDNF) - a protein belonging to the neurotrophin family - is widely expressed both in the hippocampus and in platelets. Platelets constitute an important reservoir of BDNF; however, little is known about the factors modulating its release into the circulation and whether anti-platelet drugs affect this secretion. In this review, we have discussed the link between BDNF and platelets and their role in neurological disorders.
Collapse
Affiliation(s)
- Nezha Bouhaddou
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Mabrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farah Atifi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| |
Collapse
|
2
|
Nakahama-Matsushima M, Kamijyo YI, Umemoto Y, Hashizaki T, Nishimura Y, Furusawa K, Furotani Y, Tajima F, Kouda K. Increase in Serum Interleukin-1 Receptor Antagonist (IL-1ra) Levels after Wheelchair Half Marathon Race in Male Athletes with Spinal Cord Injury. J Clin Med 2023; 12:7098. [PMID: 38002710 PMCID: PMC10672277 DOI: 10.3390/jcm12227098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Exercise increases the serum level of interleukin-6 (IL-6), which in turn stimulates the production of various inflammatory cytokine antagonists, such as interleukin-1 receptor antagonist (IL-1ra). Individuals with cervical spinal cord injury (CSCI) are at high risk of inflammatory conditions. This study compared the effects of wheelchair half marathon on the immune system of male athletes with CSCI and those with thoracic/lumber spinal cord injury (SCI). Neutrophil count, IL-1ra, IL-6, and various endocrine parameters were measured before, immediately and 1 h after the race in five CSCI and six SCI who completed the wheelchair marathon race. The percentage of neutrophils was significantly higher in CSCI immediately and 1 h after the race, compared with the baseline, and significantly higher in SCI at 1 h after the race. IL-6 was significantly higher immediately and 1 h after the race in SCI, whereas no such changes were noted in IL-6 in CSCI. IL-1ra was significantly higher at 1 h after the race in both SCI and CSCI. The race was associated with an increase in IL-1ra in both CSCI and SCI. These findings suggest wheelchair half marathon race increases IL-1ra even under stable IL-6 status in male CSCI individuals, and that such post-race increase in IL-1ra is probably mediated through circulatory neutrophils.
Collapse
Affiliation(s)
- Masumi Nakahama-Matsushima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yoshi-ichiro Kamijyo
- Department of Rehabilitation Medicine, School of Medicine, Dokkyo Medical University, Mibu 321-0293, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Takamasa Hashizaki
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, School of Medicine, Iwate Medical University, Yahaba 028-3695, Japan
| | - Kazunari Furusawa
- Department of Rehabilitation Medicine, Kibikogen Rehabilitation Center for Employment Injuries, Okayama 716-1241, Japan
| | - Yohei Furotani
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Ken Kouda
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| |
Collapse
|
3
|
Myokines may target accelerated cognitive aging in people with spinal cord injury: A systematic and topical review. Neurosci Biobehav Rev 2023; 146:105065. [PMID: 36716905 DOI: 10.1016/j.neubiorev.2023.105065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Persons with spinal cord injury (SCI) can suffer accelerated cognitive aging, even when correcting for mood and concomitant traumatic brain injury. Studies in healthy older adults have shown that myokines (i.e. factors released from muscle tissue during exercise) may improve brain health and cognitive function. Myokines may target chronic neuroinflammation, which is considered part of the mechanism of cognitive decline both in healthy older adults and SCI. An empty systematic review, registered in PROSPERO (CRD42022335873), was conducted as proof of the lack of current research on this topic in people with SCI. Pubmed, Embase, Cochrane and Web of Science were searched, resulting in 387 articles. None were considered eligible for full text screening. Hence, the effect of myokines on cognitive function following SCI warrants further investigation. An in-depth narrative review on the mechanism of SCI-related cognitive aging and the myokine-cognition link was added to substantiate our hypothetical framework. Readers are fully updated on the potential role of exercise as a treatment strategy against cognitive aging in persons with SCI.
Collapse
|
4
|
Nhan K, Todd KR, Jackson GS, Van der Scheer JW, Dix GU, Martin Ginis KA, Little JP, Walsh JJ. Acute submaximal exercise does not impact aspects of cognition and BDNF in people with spinal cord injury: A pilot study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:983345. [DOI: 10.3389/fresc.2022.983345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
ObjectiveTo investigate the effect of acute submaximal exercise, based on the spinal cord injury (SCI) Exercise Guidelines, on cognition and brain-derived neurotrophic factor (BDNF) in people with SCI.DesignEight adults (7 males) with traumatic SCI volunteered in this pre-registered pilot study. In randomized order, participants completed submaximal intensity arm cycling (60% of measured peak-power output at 55–60 rpm) for 30 min or time-matched quiet rest (control condition) on separate days. Blood-borne BDNF was measured in serum and plasma at pre-intervention, 0 min and 90 min post-intervention. Cognition was assessed using the Stroop Test and Task-Switching Test on an electronic tablet pre- and 10 min post-intervention.ResultsSubmaximal exercise had no effect on plasma [F(2,12) = 1.09; P = 0.365; η² = 0.069] or serum BDNF [F(2,12) = 0.507; P = 0.614; η² = 0.024] at either 0 min or 90 min post-intervention. Similarly, there was no impact of exercise on either Stroop [F(1,7) = 2.05; P = 0.195; η² = 0.065] or Task-Switching performance [F(1,7) = 0.016; P = 0.903; η² < 0.001] compared to the control condition. Interestingly, there was a positive correlation between years since injury and resting levels of both plasma (r = 0.831; P = 0.011) and serum BDNF (r = 0.799; P = 0.023). However, there was not relationship between years since injury and the BDNF response to exercise.ConclusionsAcute guideline-based exercise did not increase BDNF or improve aspects of cognition in persons with SCI. This work establishes a foundation for continued investigations of exercise as a therapeutic approach to promoting brain health among persons with SCI.
Collapse
|
5
|
Huang W, Qu M, Li L, Liu T, Lin M, Yu X. SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats. Stem Cell Res Ther 2021; 12:334. [PMID: 34112262 PMCID: PMC8193895 DOI: 10.1186/s13287-021-02401-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND How to obtain a small interfering RNA (siRNA) vector has become a moot point in recent years. Exosomes (Exo) show advantages of long survival time in vivo, high transmission efficiency, and easy penetration across the blood-spinal cord barrier, renowned as excellent carriers of bioactive substances. METHODS We applied mesenchymal stem cell (MSC)-derived exosomes as the delivery of synthesized siRNA, which were extracted from rat bone marrow. We constructed exosomes-siRNA (Exo-siRNA) that could specifically silence CTGF gene in the injury sites by electroporation. During the administration, we injected Exo-siRNA into the tail vein of SCI rats, RESULTS: In vivo and in vitro experiments showed that Exo-siRNA not only effectively inhibited the expressions of CTGF gene, but quenched inflammation, and thwarted neuronal apoptosis and reactive astrocytes and glial scar formation. Besides, it significantly upregulated several neurotrophic factors and anti-inflammatory factors, acting as a facilitator of locomotor recovery of rats with spinal cord injury (SCI). CONCLUSIONS In conclusion, this study has combined the thoroughness of gene therapy and the excellent drug-loading characteristics of Exo for the precise treatment of SCI, which will shed new light on the drug-loading field of Exo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
- Department of Orthopaedics, Dongguan Tungwah Hospital, No.1 Dongcheng East Road, Dongcheng District, Dongguan, 523000, Guangdong Province, China
| | - Mingjia Qu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Lu Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Tao Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Miaoman Lin
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China.
| |
Collapse
|
6
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|