1
|
Angeli CA, Rejc E, Ugiliweneza B, Boakye M, Forrest GF, Brockman K, Vogt J, Logsdon B, Fields K, Harkema SJ. Activity-based recovery training with spinal cord epidural stimulation improves standing performance in cervical spinal cord injury. J Neuroeng Rehabil 2025; 22:101. [PMID: 40301929 PMCID: PMC12042302 DOI: 10.1186/s12984-025-01636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Individuals with a clinically complete spinal cord injury are unable to stand independently without external assistance. Studies have shown the combination of spinal cord epidural stimulation (scES) targeted for standing with activity-based recovery training (ABRT) can promote independence of standing in individuals with spinal cord injury. This cohort study aimed to assess the effects of stand-ABRT with scES in individuals with cervical chronic spinal cord injury. We evaluated the ability of these individuals to stand independently from physical assistance across multiple sessions. METHODS Thirty individuals participated in this study, all unable to stand independently at the start of the intervention. Individuals were participating in a randomized clinical trial and received stand-ABRT in addition to targeted cardiovascular scES or voluntary scES. During the standing intervention, participants were asked to stand 2 h a day, 5 days a week for 80 sessions (Groups 1 and 2) or 160 sessions (Groups 3 and 4). RESULTS A total of 3,524 training days were considered for analysis. Group 1 had 507 days, group 2 with 578 days, and 1152 and 1269 days for groups 3 and 4 respectively. 71% of sessions reached the two-hour standing goal. All individuals achieved outcomes of lower limb independent extension with spinal cord epidural stimulation, with a wide range throughout a training day. Sixteen participants achieved unassisted hip extension while maintaining unassisted bilateral knee and trunk extension. Participants receiving initial voluntary scES training performed better in unassisted bilateral knee and trunk extension than those receiving initial cardiovascular scES. The lower-limb standing activation pattern changes were consistent with the greater standing independence observed by all groups. CONCLUSIONS Individuals with chronic cervical spinal cord injury were able to achieve various levels of extension without manual assistance during standing with balance assist following stand-ABRT with scES. These results provide evidence that scES modulates network excitability of the injured spinal cord to allow for the integration of afferent and supraspinal descending input to promote standing in individuals with spinal cord injury. TRIAL REGISTRATION The study was registered on Clinical Trials.gov (NCT03364660) prior to subject enrollment.
Collapse
Affiliation(s)
- Claudia A Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
| | - Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Udine, Udine, Italy
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
| | - Katelyn Brockman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Justin Vogt
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Brittany Logsdon
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Katie Fields
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, NJ, USA
| |
Collapse
|
2
|
Asamoto S, Sawada H, Arai T, Morita S, Muto J, Sato K, Kawamata T. Achieving the United Nations Sustainable Development Goals in Spinal Surgery: Patient-Centered Care and Social Contribution. World Neurosurg 2025; 193:1138-1144. [PMID: 39613094 DOI: 10.1016/j.wneu.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND In recent years, achieving a sustainable society has become an international challenge. The medical field is also being called upon to contribute to the United Nations Sustainable Development Goals (SDGs). However, awareness of the SDGs in Japan is low, and relevant efforts in the healthcare sector are particularly lagging behind. This study aimed to describe the relationship between spinal surgery and the SDGs and to raise awareness regarding it in Japan. METHODS 1) Literature review: PubMed was used to search for literature using the 2 keywords "spinal surgery" and "SDGs." Additional literature search was conducted using the 2 keywords "spinal surgery" and "climate change" and "spinal surgery" and "environmental impact." 2) Data analysis: We analyzed the energy consumption, medical waste management, and carbon dioxide emissions related to surgery at Makita General Hospital. Surgery-related carbon dioxide emissions were evaluated in a study on gas anesthesia among general anesthetics and in a study on the travel patterns of patients who underwent lumbar spinal stenosis surgery. 3) Discussion: Based on the results of the literature review and data analysis, we discussed the potential of spinal surgery to contribute to achieving the SDGs. RESULTS Spinal surgery is an important medical field that contributes to improving people's health and quality of daily living. It can potentially contribute to at least 10 of the 17 SDGs. However, awareness of the SDGs is low in Japan and lags far behind that in developed countries. CONCLUSIONS Spinal surgery can potentially contribute significantly to achieving the SDGs. Japanese spinal surgeons can help in achieving a sustainable society by raising awareness of the SDGs and taking proactive action.
Collapse
Affiliation(s)
- Shunji Asamoto
- Green Sports Alliance, Tokyo, Japan; Department of Neurosurgery, Makita General Hospital, Tokyo, Japan.
| | | | - Takashi Arai
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuhei Morita
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Muto
- Department of Neurosurgery, Fujita Health University Hospital, Aichi, Japan
| | - Koji Sato
- Department of Orthopedic Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Aichi, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Rejc E, Bowersock C, Pisolkar T, Omofuma I, Luna T, Khan M, Santamaria V, Ugiliweneza B, Angeli CA, Forrest GF, Stein J, Agrawal S, Harkema SJ. Robotic Postural Training With Epidural Stimulation for the Recovery of Upright Postural Control in Individuals With Motor Complete Spinal Cord Injury: A Pilot Study. Neurotrauma Rep 2024; 5:277-292. [PMID: 38515546 PMCID: PMC10956531 DOI: 10.1089/neur.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical (n = 5) or high-thoracic (n = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance. Robotic postural training re-enabled and/or largely improved the participants' ability to control steady standing, self-initiated trunk movements and upper limb reaching movements while standing with free hands, receiving only external assistance for pelvic control. These improvements were associated with neuromuscular activation pattern adaptations above and below the lesion. These findings suggest that the human spinal cord below the level of injury can generate meaningful postural responses when its excitability is modulated by scES, and can learn to improve these responses. Upright postural control improvements can enhance functional motor recovery promoted by scES after severe SCI.
Collapse
Affiliation(s)
- Enrico Rejc
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
- Department of Medicine, University of Udine, Udine, Italy
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Collin Bowersock
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tanvi Pisolkar
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Isirame Omofuma
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Tatiana Luna
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Moiz Khan
- Department of Radiology at BWH, Harvard Medical School, Boston, Massachusetts, USA
| | - Victor Santamaria
- Department of Physical Therapy, New York Medical College, Valhalla, New York, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A Angeli
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
| | - Gail F Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Kessler Foundation, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Sunil Agrawal
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|