1
|
Li Y, Liang J, Tian X, Chen Q, Zhu L, Wang H, Liu Z, Dai X, Bian C, Sun C. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br J Nutr 2023; 130:1473-1486. [PMID: 36815302 DOI: 10.1017/s000711452300048x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fat deposition and lipid metabolism are closely related to the morphology, structure and function of mitochondria. The morphology of mitochondria between fusion and fission processes is mainly regulated by protein posttranslational modification. Intermittent fasting (IF) promotes high expression of Sirtuin 3 (Sirt3) and induces mitochondrial fusion in high-fat diet (HFD)-fed mice. However, the mechanism by which Sirt3 participates in mitochondrial protein acetylation during IF to regulate mitochondrial fusion and fission dynamics remains unclear. This article demonstrates that IF promotes mitochondrial fusion and improves mitochondrial function in HFD mouse inguinal white adipose tissue. Proteomic sequencing revealed that IF increased protein deacetylation levels in HFD mice and significantly increased Sirt3 mRNA and protein expression. After transfecting with Sirt3 overexpression or interference vectors into adipocytes, we found that Sirt3 promoted adipocyte mitochondrial fusion and improved mitochondrial function. Furthermore, Sirt3 regulates the JNK-FIS1 pathway by deacetylating malate dehydrogenase 2 (MDH2) to promote mitochondrial fusion. In summary, our study indicates that IF promotes mitochondrial fusion and improves mitochondrial function by upregulating the high expression of Sirt3 in HFD mice, promoting deacetylation of MDH2 and inhibiting the JNK-FIS1 pathway. This research provides theoretical support for studies related to energy limitation and animal lipid metabolism.
Collapse
Affiliation(s)
- Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Qi Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Longbo Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Han Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xulei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chenqi Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
2
|
Chen L, Jin X, Ma J, Xiang B, Li X. YAP at the progression of inflammation. Front Cell Dev Biol 2023; 11:1204033. [PMID: 37397250 PMCID: PMC10311505 DOI: 10.3389/fcell.2023.1204033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Yes-associated protein (YAP) is a transcriptional regulator that affects cell proliferation, organ size and tissue development and regeneration, and has therefore, been an important object of study. In recent years, there has been an increasing research focus on YAP in inflammation and immunology, and the role of YAP in the development of inflammation and in immune escape by tumors has been progressively elucidated. Because YAP signaling involves a variety of different signal transduction cascades, the full range of functions in diverse cells and microenvironments remains incompletely understood. In this article, we discuss the complex involvement of YAP in inflammation, the molecular mechanisms through which it exercises pro- and anti-inflammatory effects under different conditions, and the progress achieved in elucidating the functions of YAP in inflammatory diseases. A thorough understanding of YAP signaling in inflammation will provide a foundation for its use as a therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xintong Jin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Aroke EN, Hobson JM, Ptacek T, Jackson P, Goodin BR. Genome-wide DNA methylation study identifies significant epigenomic changes associated with internalized stigma in adults with non-specific chronic low back pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1021963. [PMID: 36518098 PMCID: PMC9742283 DOI: 10.3389/fpain.2022.1021963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Non-specific chronic low back pain (cLBP) represents a common musculoskeletal condition with no identifiable cause. It cannot be diagnosed with conventional neuroimaging techniques such as computerized tomography (CT). The diagnostic uncertainty that characterizes non-specific cLBP can lead to stigmatizing responses from others that can become internalized Among individuals with non-specific cLBP, internalized stigma is associated with greater pain intensity and disability. Yet, no study has examined the biological mechanism linking high internalized stigma to worse outcomes in individuals with non-specific cLBP. We aimed to identify differentially methylated loci (DML), enrichment pathways, and associated network interactions among individuals with non-specific cLBP experiencing low vs. high internalized stigma. We examined DNA methylation in whole blood samples from 48 adults, ages 19-85, using reduced representation bisulfite sequencing (RRBS). After controlling for age, sex, race, and multiple testing, differentially methylated loci (DML) differed in adults with low vs. high internalized stigma by at least 10% and q < 0.01 in 3,665 CpG sites: 2,280 hypomethylated and 1,385 hypermethylated. Gene ontology (GO) analyses of the annotated genes from these sites revealed significant enrichment of 274 biological processes, 29 cellular components, and 24 molecular functions (adjusted p < 0.05). The top enriched molecular functions regulate protein binding and DNA binding of transcription factor activity. Pathway analyses indicated that many functional genomic pathways, including Hippo Signaling, Melanogenesis, and Pathways in Cancer, were enriched with differentially methylated genes. Also, there was a significant interaction between relevance pathways such as P53, mTOR, PI3K-Akt, and Wnt signaling pathways. These pathways have previously been associated with neuroinflammation, neurodegeneration, and stress-related conditions. Thus, findings point to possible stress-induced DNAm changes as the link between high levels of internalized stigma and worse outcomes in adults with non-specific cLBP.
Collapse
Affiliation(s)
- Edwin N. Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joanna M. Hobson
- Biobehavioral Pain Lab, Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Travis Ptacek
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Burel R. Goodin
- Biobehavioral Pain Lab, Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Addiction and Pain Prevention and Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Zhang Y, Lin C, Yang Q, Wang Y, Zhao W, Li L, Ren X, Zhao J, Zang W, Cao J. Spinal Sirtuin 3 Contributes to Electroacupuncture Analgesia in Mice with Chronic Constriction Injury–Induced Neuropathic Pain. Neuromodulation 2022; 26:563-576. [PMID: 36030144 DOI: 10.1016/j.neurom.2022.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Electroacupuncture (EA) is a traditional Chinese therapeutic technique that has a beneficial effect on neuropathic pain; however, the specific mechanism remains unclear. In this study, we investigated whether EA inhibits spinal Ca/calmodulin-dependent protein kinase II (CaMKIIα) phosphorylation through Sirtuin 3 (SIRT3) protein, thus relieving neuropathic pain. MATERIALS AND METHODS We used wild-type and SIRT3 knockout (SIRT3-/-) mice and used chronic constriction injury (CCI) as a pain model. We performed Western blotting, immunostaining, von Frey, and Hargreaves tests to gather biochemical and behavioral data. Downregulation and overexpression and spinal SIRT3 protein were achieved by intraspinal injection of SIRT3 small interfering RNA and intraspinal injection of lentivirus-SIRT3. To test the hypothesis that CaMKIIα signaling was involved in the analgesic effects of EA, we expressed CaMKIIα-specific designer receptors exclusively activated by designer drugs (DREADDs) in the spinal dorsal horn (SDH) of mice. RESULTS These results showed that the mechanical and thermal hyperalgesia induced by CCI was related to the decreased spinal SIRT3 expression in the SDH of mice. A significant reduction of mechanical and thermal thresholds was found in the SIRT3-/- mice. SIRT3 overexpression or EA treatment alleviated CCI-induced neuropathic pain and prevented the spinal CaMKIIα phosphorylation. Most importantly, EA increased the expression of spinal SIRT3 protein in the SDH. Downregulation of spinal SIRT3 or CaMKIIα Gq-DREADD activation inhibited the regulatory effect of EA on neuropathic pain. CONCLUSION Our results showed that CaMKIIα phosphorylation was inhibited by spinal SIRT3 in neuropathic pain and that EA attenuated CCI-induced neuropathic pain mainly by upregulating spinal SIRT3 expression in the SDH of mice.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Caihong Lin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Qingqing Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Yuanzeng Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Wen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianyuan Zhao
- Zhongshan Hospital of Fudan University, Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Morris G, Gray L, Hyun Kim J, Dean OM, Berk M, Walder K. Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. Int J Mol Sci 2021; 22:7164. [PMID: 34281223 PMCID: PMC8268913 DOI: 10.3390/ijms22137164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Gerwyn Morris
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
6
|
Jin J, Zhao X, Fu H, Gao Y. The Effects of YAP and Its Related Mechanisms in Central Nervous System Diseases. Front Neurosci 2020; 14:595. [PMID: 32676008 PMCID: PMC7333666 DOI: 10.3389/fnins.2020.00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Yes-associated protein (YAP) is a key effector downstream of the Hippo signaling pathway and plays an important role in the development of the physiology and pathology of the central nervous system (CNS), especially regulating cell proliferation, differentiation, migration, and apoptosis. However, the roles and underlying mechanisms of YAP in CNS diseases are still puzzling. Here, this review will systematically and comprehensively summarize the biological feature, pathological role, and underlying mechanisms of YAP in normal and pathologic CNS, which aims to provide insights into the potential molecular targets and new therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Jiayan Jin
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxuan Zhao
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huifang Fu
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Traditional Chinese Medicine Hospital of Jiangning District, Nanjing, China
| | - Yuan Gao
- Department of Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Forensic Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|