1
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
2
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Cui X, Liu X, Kong P, Du T, Li T, Yang G, Zhang W, Jing X, Wang W. PTEN inhibitor VO-OHpic protects endplate chondrocytes against apoptosis and calcification via activating Nrf-2 signaling pathway. Aging (Albany NY) 2023; 15:2275-2292. [PMID: 36971687 PMCID: PMC10085618 DOI: 10.18632/aging.204612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Cartilage endplate (CEP) degeneration and calcification is an important contributor to the onset and pathogenesis of intervertebral disc degeneration (IDD). However, the underlying mechanisms of CEP degeneration remain elusive, let alone according treatment strategies to prevent CEP degeneration. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene that promotes cell apoptosis, and recent studies indicated that PTEN is overexpressed in degenerated intervertebral disc. However, whether direct inhibition of PTEN attenuates CEP degeneration and IDD development remains largely unknown. In the present study, our in vivo experiments demonstrated that VO-OHpic could attenuate IDD progression and CEP calcification. We also found that VO-OHpic inhibited oxidative stress induced chondrocytes apoptosis and degeneration by activating Nrf-2/HO-1 pathway, thus promoted parkin mediated mitophagy process and inhibited chondrocytes ferroptosis, alleviated redox imbalance and eventually improved cell survival. Nrf-2 siRNA transfection significantly reversed the protective effect of VO-OHpic on endplate chondrocytes. In conclusion, our study demonstrated that inhibition of PTEN with VO-OHpic attenuates CEP calcification and IDD progression. Moreover, VO-OHpic protects endplate chondrocytes against apoptosis and degeneration via activating Nrf-2/HO-1 mediated mitophagy process and ferroptosis inhibition. Our results suggest that VO-OHpic may be a potential effective medicine for IDD prevention and treatment.
Collapse
Affiliation(s)
- Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Peng Kong
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Ting Du
- Department of Medical, Yidu Cloud (Beijing) Technology Co. Ltd., Beijing 100191, China
| | - Tao Li
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Guihe Yang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| |
Collapse
|
4
|
Yu H, Peng Y, Dong W, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Zhao Y, Li L, Hong S. Nrf2 attenuates methamphetamine-induced myocardial injury by regulating oxidative stress and apoptosis in mice. Hum Exp Toxicol 2023; 42:9603271231219488. [PMID: 38031934 DOI: 10.1177/09603271231219488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
OBJECTIVES Methamphetamine (MA) abuse is a serious social problem worldwide. Cardiovascular complications were the second leading cause of death among MA abusers. We aimed to clarify the effects of MA on myocardial injury, oxidative stress, and apoptosis in myocardial cells and to explore the potential mechanism of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in MA-induced oxidative stress and apoptosis. METHODS An acute cardiac toxicity model of MA was established by intraperitoneal injection of MA (2 mg/kg) for 5 days. Nrf2 activation (by sulforaphane (SFN) 1 h before MA injection) and Nrf2 gene knockout were performed to explore the regulatory effects of Nrf2 on cardiac toxicity. RESULTS The protein expressions of Nrf2 (p < .001) and heme oxygenase-1 (HO-1) were increased (p < .01), suggesting that MA activated the Nrf2/HO-1 pathway. In the MA group, cardiac injury score (p < .001) and cardiac troponin I (cTnI) protein expression increased (p < .01). Malondialdehyde (MDA) content increased (p < .001), superoxide dismutase (SOD) activity decreased (p < .05). Protein expressions of Caspase-3 (p < .001) and Bax (p < .001) increased, and Bcl-2 decreased (p < .001) as well. These changes were reversed by activation of Nrf2 but became more pronounced after Nrf2 knockout, suggested that the activation and knockout of Nrf2 attenuated and aggravated MA-induced myocardial injury, oxidative stress and apoptosis in myocardial cells, respectively. CONCLUSIONS MA administration induced myocardial injury, oxidative stress, and apoptosis in mice. Nrf2 attenuated MA-induced myocardial injury by regulating oxidative stress and apoptosis, thus playing a protective role.
Collapse
Affiliation(s)
- Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanxia Peng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yongna Zhao
- Key Laboratory of Natural Medicine Pharmacology of Yunnan Province, Kunming Medical University, Kunming, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
6
|
NEAT1 Confers Radioresistance to Hepatocellular Carcinoma Cells by Inducing PINK1/Parkin-Mediated Mitophagy. Int J Mol Sci 2022; 23:ijms232214397. [PMID: 36430876 PMCID: PMC9692527 DOI: 10.3390/ijms232214397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) variant 1 (NEAT1v1), confers radioresistance to hepatocellular carcinoma (HCC) cells by inducing autophagy via γ-aminobutyric acid A receptor-associated protein (GABARAP). Radiation induces oxidative stress to damage cellular components and organelles, but it remains unclear how NEAT1v1 protects HCC cells from radiation-induced oxidative stress via autophagy. To address this, we precisely investigated NEAT1v1-induced autophagy in irradiated HCC cell lines. X-ray irradiation significantly increased cellular and mitochondrial oxidative stress and mitochondrial DNA content in HCC cells while NEAT1v1 suppressed them. NEAT1v1 concomitantly induced the phosphatase and tensin homolog-induced kinase 1 (PINK1)/parkin-mediated mitophagy. Interestingly, parkin expression was constitutively upregulated in NEAT1v1-overexpressing HCC cells, leading to increased mitochondrial parkin levels. Superoxide dismutase 2 (SOD2) was also upregulated by NEAT1v1, and GABARAP or SOD2 knockdown in NEAT1v1-overexpressing cells increased mitochondrial oxidative stress and mitochondrial DNA content after irradiation. Moreover, it was suggested that SOD2 was involved in NEAT1v1-induced parkin expression, and that GABARAP promoted parkin degradation via mitophagy. This study highlights the unprecedented roles of NEAT1v1 in connecting radioresistance and mitophagy in HCC.
Collapse
|
7
|
Zhang Z, Yi J, Xie B, Chen J, Zhang X, Wang L, Wang J, Hou J, Wei H. Parkin, as a Regulator, Participates in Arsenic Trioxide-Triggered Mitophagy in HeLa Cells. Curr Issues Mol Biol 2022; 44:2759-2771. [PMID: 35735630 PMCID: PMC9222214 DOI: 10.3390/cimb44060189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Parkin is a well-established synergistic mediator of mitophagy in dysfunctional mitochondria. Mitochondria are the main target of arsenic trioxide (ATO) cytotoxicity, and the effect of mitophagy on ATO action remains unclear. In this study, we used stable Parkin-expressing (YFP-Parkin) and Parkin loss-of-function mutant (Parkin C431S) HeLa cell models to ascertain whether Parkin-mediated mitophagy participates in ATO-induced apoptosis/cell death. Our data showed that the overexpression of Parkin significantly sensitized HeLa cells to ATO-initiated proliferation inhibition and apoptosis; however, the mutation of Parkin C431S significantly weakened this Parkin-mediated responsiveness. Our further investigation found that ATO significantly downregulated two fusion proteins (Mfn1/2) and upregulated fission-related protein (Drp1). Autophagy was also activated as evidenced by the formation of autophagic vacuoles and mitophagosomes, increased expression of PINK1, and recruitment of Parkin to impaired mitochondria followed by their degradation, accompanied by the increased transformation of LC3-I to LC3-II, increased expression of Beclin1 and decreased expression of P62 in YFP-Parkin HeLa cells. Enhanced mitochondrial fragmentation and autophagy indicated that mitophagy was activated. Furthermore, during the process of mitophagy, the overproduction of ROS implied that ROS might represent a key factor that initiates mitophagy following Parkin recruitment to mitochondria. In conclusion, our findings indicate that Parkin is critically involved in ATO-triggered mitophagy and functions as a potential antiproliferative target in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hulai Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (Z.Z.); (J.Y.); (B.X.); (J.C.); (X.Z.); (L.W.); (J.W.); (J.H.)
| |
Collapse
|
8
|
Leduc-Gaudet JP, Hussain SN, Gouspillou G. Parkin: A potential target to promote healthy aging. J Physiol 2022; 600:3405-3421. [PMID: 35691026 DOI: 10.1113/jp282567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase mostly known for its role in regulating the removal of defective mitochondria via mitophagy. However, increasing experimental evidence that Parkin regulates several other aspects of mitochondrial biology in addition to its role in mitophagy has emerged over the past two decades. Indeed, Parkin has been shown to regulate mitochondrial biogenesis and dynamics and mitochondrial-derived vesicle formation, suggesting that Parkin plays key roles in maintaining healthy mitochondria. While Parkin is commonly described as a cytosolic E3 ubiquitin ligase, Parkin was also detected in other cellular compartments, including the nucleus, where it regulates transcription factors and acts as a transcription factor itself. New evidence also suggests that Parkin overexpression can be leveraged to delay aging. In D. melanogaster, for example, Parkin overexpression extends lifespan. In mammals, Parkin overexpression delays hallmarks of aging in several tissues and cell types. Parkin overexpression also confers protection in various models of cellular senescence and neurological disorders closely associated with aging, such as Alzheimer's and Parkinson's diseases. Recently, Parkin overexpression has also been shown to suppress tumor growth. In this review, we discuss newly emerging biological roles of Parkin as a modulator of cellular homeostasis, survival, and healthy aging, and we explore potential mechanisms through which Parkin exerts its beneficial effects on cellular health. Abstract figure legend Parkin: A potential target to promote healthy aging Illustration of key aspects of Parkin biology, including Parkin function and cellular localization and key roles in the regulation of mitochondrial quality control. The organs and systems in which Parkin overexpression was shown to exert protective effects relevant to the promotion of healthy aging are highlighted in the black rectangle at the bottom of the Figure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Department of Biomedical Sciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Sabah Na Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Gilles Gouspillou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
9
|
Wang Y, Song M, Wang Q, Guo C, Zhang J, Zhang X, Cui Y, Cao Z, Li Y. PINK1/Parkin-mediated mitophagy is activated to protect against AFB 1-induced kidney damage in mice. Chem Biol Interact 2022; 358:109884. [PMID: 35304092 DOI: 10.1016/j.cbi.2022.109884] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
Aflatoxin B1 (AFB1) is a toxic food pollutant that has extensive deleterious impacts on the kidney. Oxidative stress represents the primary mechanism of AFB1 nephrotoxicity and can also cause mitochondrial damage. Damaged mitochondria can trigger apoptosis leading to kidney injury. PINK1/Parkin-mediated mitophagy can alleviate mitochondrial injury to maintain cellular homeostasis, however, its role in AFB1-induced kidney damage is unknown. To investigate the effect of PINK1/Parkin-mediated mitophagy on kidney impairment triggered by AFB1, 40 male wild-type (WT) C57BL/6N mice were first assigned to 4 groups and orally exposed to AFB1 at 0, 0.5, 0.75, and 1 mg/kg body weight (BW) for 28 days. The results revealed that AFB1 induced kidney damage, oxidative stress, mitochondrial damage, apoptosis and activated PINK1/Parkin-mediated mitophagy with a dose-dependent effect. Then, 20 male WT C57BL/6N mice and 20 male Parkin knockout (Parkin-/-) C57BL/6N mice were assigned to 4 groups and orally exposed to AFB1 at 0, 1, 0, and 1 mg/kg BW for 28 days. The results revealed that Parkin-/- suppressed mitophagy and exacerbated kidney damage, oxidative stress, mitochondrial damage, and apoptosis under AFB1 exposure. The aforementioned evidences demonstrate that PINK1/Parkin-mediated mitophagy is activated by AFB1 and protects against kidney damage in mice.
Collapse
Affiliation(s)
- Yuping Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Wu J, Chen H, Qin J, Chen N, Lu S, Jin J, Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865762. [PMID: 33603953 PMCID: PMC7870315 DOI: 10.1155/2021/8865762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury.
Collapse
Affiliation(s)
- Jun Wu
- Department of Ultrasonography Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
- Suzhou Research Institute of Traditional Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
| | - Hui Chen
- Department of Emergency Medicine, Traditional Chinese Medicine Hospital of Kunshan, 215300 Kunshan, China
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, China
| | - Nan Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Shiqi Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Yi Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| |
Collapse
|