1
|
Wang X, Wang Y, Chen J, Wang Q, Liu Z, Yin Y, Yang T, Shen T, Sa Y. On the mechanism of wogonin against acute monocytic leukemia using network pharmacology and experimental validation. Sci Rep 2024; 14:10114. [PMID: 38698063 PMCID: PMC11065882 DOI: 10.1038/s41598-024-60859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xixi Wang
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yanfei Wang
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jing Chen
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qinyao Wang
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhongjian Liu
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
| | - Yijie Yin
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Tao Shen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China
| | - Yalian Sa
- Center for Clinical Medicine Research, The First People's Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming, 650032, China.
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
Alsbihawi TQ, Zare Ebrahimabad M, Seyedhosseini FS, Davoodi H, Abdolahi N, Nazari A, Mohammadi S, Yazdani Y. Altered expression of miR-125a and dysregulated cytokines in systemic lupus erythematosus: Unveiling diagnostic and prognostic markers. World J Exp Med 2023; 13:102-114. [PMID: 38173550 PMCID: PMC10758663 DOI: 10.5493/wjem.v13.i5.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder impacting multiple organs, influenced by genetic factors, especially those related to the immune system. However, there is a need for new biomarkers in SLE. MicroRNA-125a (miR-125a) levels are decreased in T cells, B cells, and dendritic cells of SLE patients. MiR-125a plays a regulatory role in controlling the levels of tumor necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12), which are crucial pro-inflammatory cytokines in SLE pathogenesis. AIM To assess the levels of miR-125a, IL-12, and TNF-α in SLE patients' plasma, evaluating their diagnostic and prognostic value. METHODS The study included 100 healthy individuals, 50 newly diagnosed (ND), and 50 SLE patients undergoing treatment. The patients were monitored for a duration of 24 wk to observe and record instances of relapses. MiR-125a expression was measured using real-time reverse transcription polymerase chain reaction, while ELISA kits were used to assess IL-12 and TNF-α production. RESULTS The results showed significantly reduced miR-125a expression in SLE patients compared to healthy individuals, with the lowest levels in ND patients. TNF-α and IL-12 expression levels were significantly elevated in SLE patients, especially in the early stages of the disease. Receiver operating characteristic curve analyses, and Cox-Mantel Log-rank tests indicated miR-125a, TNF-α, and IL-12 as proper diagnostic biomarkers for SLE. A negative correlation was found between plasma miR-125a expression and IL-12/TNF-α levels in SLE patients. CONCLUSION Decreased miR-125a levels may be involved in the development of SLE, while elevated levels of IL-12 and TNF-α contribute to immune dysregulation. These findings offer new diagnostic and prognostic markers for SLE. Moreover, the negative correlation observed suggests an interaction between miR-125a, TNF-α, and IL-12. Further research is necessary to uncover the underlying mechanisms that govern these relationships.
Collapse
Affiliation(s)
- Tagreed Qassim Alsbihawi
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Mojtaba Zare Ebrahimabad
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | | | - Homa Davoodi
- Department of Immunology, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Nafiseh Abdolahi
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Alireza Nazari
- Department of Surgery, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Saeed Mohammadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Yaghoub Yazdani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| |
Collapse
|
3
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Cytotoxicity of Newly Synthesized Quinazoline-Sulfonamide Derivatives in Human Leukemia Cell Lines and Their Effect on Hematopoiesis in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094720. [PMID: 35563111 PMCID: PMC9104550 DOI: 10.3390/ijms23094720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Many quinazoline derivatives with pharmacological properties, such as anticancer activity, have been synthesized. Fourteen quinazoline derivatives bearing a substituted sulfonamide moiety (4a-n) were previously synthesized and fully characterized. These compounds exerted antiproliferative activity against cell lines derived from solid tumors. Herein, the antileukemic activities of these compounds (4a-n) against two different leukemia cell lines (Jurkat acute T cell and THP-1 acute monocytic) were investigated. Our investigation included examining their activity in vivo in a zebrafish embryo model. Remarkably, compounds 4a and 4d were the most potent in suppressing cell proliferation, with an IC50 value range of 4-6.5 µM. Flow cytometry analysis indicated that both compounds halted cell progression at the G2/M phase and induced apoptosis in a dose-dependent manner. RT-PCR and Western blot analyses also showed that both compounds effectively induced apoptosis by upregulating the expression of proapoptotic factors while downregulating that of antiapoptotic factors. In vivo animal toxicity assays performed in zebrafish embryos indicated that compound 4d was more toxic than compound 4a, with compound 4d inducing multiple levels of teratogenic phenotypes in zebrafish embryos at a sublethal concentration. Moreover, both compounds perturbed the hematopoiesis process in developing zebrafish embryos. Collectively, our data suggest that compounds 4a and 4d have the potential to be used as antileukemic agents.
Collapse
|