1
|
Silva AS, Neves KM, Freitas RF, das Chagas TP, Salay LC, da Silva EGP, Uetanabaro APT, da Costa AM. Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents. Appl Biochem Biotechnol 2025; 197:3271-3294. [PMID: 39847246 DOI: 10.1007/s12010-024-05147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases. Accordingly, the present study sought to produce, characterize, and apply amylases obtained from solid-state fermentation of cocoa and peach-palm waste by the fungus Pleurotus pulmonarius CCB19. The highest amylase production by P. pulmonarius was observed after 3 days of solid-state fermentation of the cocoa shells, with an activity of 83.90 U/gds. The physicochemical characterization of the crude amylase using the artificial neural network (ANN) revealed that the highest activity was observed at pH 9 and a temperature of 20 °C (120.7 U/gds). Furthermore, the amylase demonstrated stability in the majority of the tested conditions, maintaining up to 80% of its residual activity for up to 120 min of incubation. With regard to the impact of ions and reagents on enzymatic activity, a positive effect was observed in the presence of Co+ ions at concentrations of 1 and 5 mM, whereas Cu+ ions at 5 mM demonstrated an inhibitory effect. The addition of SDS and EDTA reagents did not affect the observed activity. Furthermore, the extract was tested in commercial detergent formulations and demonstrated enhanced compatibility (110%) and efficacy (270% with boiled detergent) in removing starch stains from fabrics with Ariel liquid detergent. In conclusion, amylase derived from the fungus Pleurotus pulmonarius CCB19 exhibited favorable properties that make it a suitable candidate for use as an additive in laundry detergent formulations.
Collapse
Affiliation(s)
- Alaiana Santos Silva
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Karollaine Moura Neves
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Rayssa Falcão Freitas
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Thiago Pereira das Chagas
- Department of Engineering and Computing, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Luiz Carlos Salay
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Erik Galvão Paranhos da Silva
- Department of Exact Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16 Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Andréa Miura da Costa
- Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
2
|
Chen CC, Nargotra P, Kuo CH, Liu YC. High-Molecular-Weight Exopolysaccharides Production from Tuber brochii Cultivated by Submerged Fermentation. Int J Mol Sci 2023; 24:ijms24054875. [PMID: 36902305 PMCID: PMC10002917 DOI: 10.3390/ijms24054875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Truffles are known worldwide for their peculiar taste, aroma, and nutritious properties, which increase their economic value. However, due to the challenges associated with the natural cultivation of truffles, including cost and time, submerged fermentation has turned out to be a potential alternative. Therefore, in the current study, the cultivation of Tuber borchii in submerged fermentation was executed to enhance the production of mycelial biomass, exopolysaccharides (EPSs), and intracellular polysaccharides (IPSs). The mycelial growth and EPS and IPS production was greatly impacted by the choice and concentration of the screened carbon and nitrogen sources. The results showed that sucrose (80 g/L) and yeast extract (20 g/L) yielded maximum mycelial biomass (5.38 ± 0.01 g/L), EPS (0.70 ± 0.02 g/L), and IPS (1.76 ± 0.01 g/L). The time course analysis of truffle growth revealed that the highest growth and EPS and IPS production was observed on the 28th day of the submerged fermentation. Molecular weight analysis performed by the gel permeation chromatography method revealed a high proportion of high-molecular-weight EPS when 20 g/L yeast extract was used as media and the NaOH extraction step was carried out. Moreover, structural analysis of the EPS using Fourier-transform infrared spectroscopy (FTIR) confirmed that the EPS was β-(1-3)-glucan, which is known for its biomedical properties, including anti-cancer and anti-microbial activities. To the best of our knowledge, this study represents the first FTIR analysis for the structural characterization of β-(1-3)-glucan (EPS) produced from Tuber borchii grown in submerged fermentation.
Collapse
Affiliation(s)
- Cheng-Chun Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (C.-H.K.); (Y.-C.L.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-4-22853769 (Y.-C.L.)
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-H.K.); (Y.-C.L.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-4-22853769 (Y.-C.L.)
| |
Collapse
|
3
|
Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies. Bioprocess Biosyst Eng 2023; 46:645-664. [PMID: 36826507 DOI: 10.1007/s00449-023-02850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, β-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.
Collapse
|
4
|
Excessive Oxalic Acid Secreted by Sparassis latifolia Inhibits the Growth of Mycelia during Its Saprophytic Process. Cells 2022; 11:cells11152423. [PMID: 35954267 PMCID: PMC9368360 DOI: 10.3390/cells11152423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Sparassis latifolia is an edible and medicinal mushroom in Asia commercially cultivated on substrates containing pine sawdust. Its slow mycelial growth rate greatly increases the cultivation cycle. In this study, we mainly studied the role of oxalic acid (OA) secreted by S. latifolia in its saprophytic process. Our results show that crystals observed on the mycelial surface contained calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) according to X-ray diffraction (XRD). Vegetative mycelia secreted large amounts of OA during extended culture periods. However, high concentrations of OA decreased the mycelial growth rate significantly. Moreover, the degradation of lignocellulose was significantly inhibited under high concentrations of OA. These changes could be attributed to the significantly decreased activities of lignocellulose-degrading enzymes. In conclusion, by establishing a link between OA secretion by the mycelium and the slow growth rate of its saprophytic process, this work provides fundamental information for shortening the cultivation cycle of S. latifolia.
Collapse
|
5
|
Nakano S, Kinoshita A, Obase K, Nakamura N, Furusawa H, Noguchi K, Yamanaka T. Physiological characteristics of pure cultures of a white-colored truffle <i>Tuber japonicum</i>. MYCOSCIENCE 2022; 63:53-57. [PMID: 37092006 PMCID: PMC9999085 DOI: 10.47371/mycosci.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
A white-colored truffle Tuber japonicum, indigenous to Japan, is an ascomycetous ectomycorrhizal fungus. To clarify the physiological characteristics of this fungus, we investigated the influence of culture medium, temperature, and sources of nitrogen (N) and carbon (C) on the growth of five strains. Tuber japonicum strains grew better on malt extract and modified Melin-Norkrans medium, and showed peak growth at 20 °C or 25 °C. This fungus utilized inorganic (NH4 + and NO3 -) and organic N sources (casamino acids, glutamine, peptone, urea, and yeast extract). Additionally, this fungus utilized various C sources, such as monosaccharide (arabinose, fructose, galactose, glucose, and mannose), disaccharide (maltose, sucrose, and trehalose), polysaccharide (dextrin and soluble starch), and sugar alcohol (mannitol). However, nutrient sources that promote growth and their effects on growth promotion widely varied among strains. This can result from the strain difference in enzyme activities involved in the assimilation and metabolism of these sources.
Collapse
Affiliation(s)
| | - Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute
| | | | | | | | - Kyotaro Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute
| | | |
Collapse
|
6
|
Bamigboye CO, Okonji RE, Oluremi IO, James V. Stain removing, juice-clarifying, and starch-liquefying potentials of amylase from Pleurotus tuberregium in submerged fermentation system. J Genet Eng Biotechnol 2022; 20:23. [PMID: 35142943 PMCID: PMC8831669 DOI: 10.1186/s43141-022-00298-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022]
Abstract
Background Amylase is used commercially in food, textiles, sugar syrup, paper, and detergent industries. Bacteria and fungi remain a significant source of industrial enzymes. Pleurotus tuberregium is a macro-fungi that can exist as a fruiting body, sclerotium, mycelium, and spores. Some studies have been conducted on this fungus, with minimal studies on its enzyme activity (s) using the submerged fermentation technique. Results The purified amylase has a specific activity of 5.26 U/mg, total activity of 189.20 U, maximally active at 70 °C, pH of 5, and retaining 100% of its activity at 30 oC for 4 min. P. tuberregium amylase showed optimal activity with plantain peel, followed by starch and pineapple peel (42, 30, and 29 μg/mL/min respectively). The presence of Ca2+, Mg2+, and Na+ ions in the reaction mixture activated the enzyme activity, but was slightly and moderately inhibited by KCl and Na2H2PO4 respectively. The crude enzyme effectively clarified juice, liquefied soluble cassava starch (with a release of appreciable glucose quantity), and partially de-stained white fabric. Conclusions The amylase obtained from the submerged fermentation of Pleurotus tuberregium has potential applications in food and detergent industries.
Collapse
Affiliation(s)
- Comfort Olukemi Bamigboye
- Microbiology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, P.M.B. 4000, Nigeria.
| | - Raphael E Okonji
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Iyanu Oluwalonimi Oluremi
- Microbiology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, P.M.B. 4000, Nigeria
| | - Victoria James
- Microbiology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, P.M.B. 4000, Nigeria
| |
Collapse
|
7
|
Kalia S, Bhattacharya A, Prajapati SK, Malik A. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. CHEMOSPHERE 2021; 279:130554. [PMID: 33873067 DOI: 10.1016/j.chemosphere.2021.130554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Desizing process in textile industry produces large volume of starch effluent. This carbon-rich waste can be used for resource recovery, such as the production of industrially useful enzymes. The present work assesses the usability of starch effluent from textile industry as an additional carbon source for enhanced production of α-amylase during solid-state fermentation (SSF) of agro-wastes by Trichoderma reesei. A significant increase (p ≤ 0.05) in α-amylase activity (25.48 ± 1.12 U mL-1) was observed with supplementation of starch effluent in SSF. Partial purification of α-amylase by 80% ammonium sulphate precipitation produced a yield of 58.39% enzyme with purification fold of 1.89. The enzyme was thermally stable at 40 °C with 90% residual activity after 5 h and 70% residual activity at 50 °C after 3 h. Using Michaelis-Menten kinetics analysis, the estimated Km and Vmax values for the partially purified α-amylase were found to be 2.55 mg mL-1 and 53.47 U mg-1, respectively. For the rapid assessment of the industrial application, desizing of the fabric was attempted. The cotton fabric was efficiently desized using α-amylase (at a concentration of 1% on the weight of fabric basis) at 80 °C. The present work demonstrates starch effluent from desizing process as a resource for the production of amylase. The amylase can further be used in the desizing process. With in-depth research, the work may lead to the development of a closed-loop, waste-recycling process for the textile industry.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Arghya Bhattacharya
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India; Department of Biotechnology, Gandhi Institute of Engineering and Technology University, Gunupur, Odisha, 765022, India.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
8
|
Lee H, Nam K, Zahra Z, Farooqi MQU. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol Biotechnol 2020; 7:9. [PMID: 32566240 PMCID: PMC7301458 DOI: 10.1186/s40694-020-00097-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Truffles, the symbiotic hypogeous edible fungi, have been worldwide regarded as a great delicacy because of their unique flavor and high nutritional value. By identifying their bioactive components such as phenolics, terpenoids, polysaccharides, anandamide, fatty acids, and ergosterols, researchers have paid attention to their biological activities including antitumor, antioxidant, antibacterial, anti-inflammatory, and hepatoprotective activities. In addition, numerous factors have been investigating that can affect the quality and productivity of truffles to overcome their difficulty in culturing and preserving. To provide the information for their potential applications in medicine as well as in functional food, this review summarizes the relevant literature about the biochemical composition, aromatic and nutritional benefits, and biological properties of truffles. Besides, various factors affecting their productivity and quality as well as the preservation methods are also highlighted.
Collapse
Affiliation(s)
- Heayyean Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Kyungmin Nam
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, 02163 MA USA
| | - Zahra Zahra
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea.,Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697 USA
| | | |
Collapse
|