1
|
Bucci P, Marcos Montero EJ, García-Depraect O, Zaritzky N, Caravelli A, Muñoz R. Assessment of the performance of a symbiotic microalgal-bacterial granular sludge reactor for the removal of nitrogen and organic carbon from dairy wastewater. CHEMOSPHERE 2024; 351:141250. [PMID: 38242520 DOI: 10.1016/j.chemosphere.2024.141250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.
Collapse
Affiliation(s)
- Paula Bucci
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina
| | - Enrique José Marcos Montero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Noemí Zaritzky
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina; Facultad de Ingeniería, Universidad Nacional de la Plata, Argentina
| | - Alejandro Caravelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
| |
Collapse
|
2
|
Jiang Y, Chen X, Wang Z, Deng H, Qin X, Huang L, Shen P. Potential application of a newly isolated microalga Desmodesmus sp. GXU-A4 for recycling Molasses vinasse. CHEMOSPHERE 2023; 328:138616. [PMID: 37028718 DOI: 10.1016/j.chemosphere.2023.138616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/11/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
The development of cost-effective and energy-efficient technologies for the stabilization of organic wastewater by microalgae has been essential and sought after. In the current study, GXU-A4 was isolated from an aerobic tank treating molasses vinasse (MV) and identified as Desmodesmus sp. based on its morphology, rbcL, and ITS sequences. It exhibited good growth with a high lipid content and chemical oxygen demand (COD) when grown using MV and the anaerobic digestate of MV (ADMV) as the growth medium. Three distinct COD concentrations for wastewater were established. Accordingly, GXU-A4 removed more than 90% of the COD from molasses vinasse (MV1, MV2, and MV3) with initial COD concentrations of 1193 mgL-1, 2100 mgL-1, and 3180 mgL-1, respectively. MV1 attained the highest COD and color removal rates of 92.48% and 64.63%, respectively, and accumulated 47.32% DW (dry weight) of lipids and 32.62% DW of carbohydrates, respectively. Moreover, GXU-A4 grew rapidly in anaerobic digestate of MV (ADMV1, ADMV2, and ADMV3) with initial COD concentrations of 1433 mgL-1, 2567 mgL-1, and 3293 mgL-1, respectively. Under ADMV3 conditions, the highest biomass reached 13.81 g L-1 and accumulated 27.43% DW of lipids and 38.70% DW of carbohydrates, respectively. Meanwhile, the removal rates of NH4-N and chroma in ADMV3 reached 91.10% and 47.89%, respectively, significantly reducing the concentration of ammonia nitrogen and color in ADMV. Thus, the results demonstrate that GXU-A4 has a high fouling tolerance, a rapid growth rate in MV and ADMV, the ability to achieve biomass accumulation and nutrient removal from wastewater, and a high potential for MV recycling.
Collapse
Affiliation(s)
- Yu Jiang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinqiang Chen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Hongyu Deng
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinhua Qin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| |
Collapse
|
3
|
Lopes GB, Goelzer A, Reichel T, de Resende MLV, Duarte WF. Potential of Desmodesmus abundans as biofertilizer in common bean (Phaseolus vulgaris L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Mechanism study on the regulation of metabolite flux for producing promising bioactive substances in microalgae Desmodesmus sp.YT through salinity stress. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sarma S, Sharma S, Rudakiya D, Upadhyay J, Rathod V, Patel A, Narra M. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 2021; 11:378. [PMID: 34367870 DOI: 10.1007/s13205-021-02911-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.
Collapse
Affiliation(s)
- Shyamali Sarma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Darshan Rudakiya
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Jinal Upadhyay
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Vinod Rathod
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Aesha Patel
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Madhuri Narra
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| |
Collapse
|
6
|
Rugnini L, Rossi C, Antonaroli S, Rakaj A, Bruno L. The Influence of Light and Nutrient Starvation on Morphology, Biomass and Lipid Content in Seven Strains of Green Microalgae as a Source of Biodiesel. Microorganisms 2020; 8:microorganisms8081254. [PMID: 32824816 PMCID: PMC7464752 DOI: 10.3390/microorganisms8081254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022] Open
Abstract
The development of clean and renewable energy sources is currently one of the most important challenges facing the world. Although research interests in algae-based energy have been increasing in the last decade, only a small percentage of the bewildering diversity exhibited by microalgae has been investigated for biodiesel production. In this work, seven strains of green microalgae belonging to the genera Scenedesmus, Tetradesmus and Desmodesmus were grown in liquid medium with or without a nitrogen (N) source—at two different irradiances (120 ± 20 and 200 ± 20 μmol photons m−2 s−1)—to evaluate biomass production and FAME (fatty acid methyl esters) content for biodiesel production. The strains of Tetradesmus obliquus and Desmodesmus abundans grown in N-deprived medium showed the highest FAME content (22.0% and 34.6%, respectively); lipid profile characterization highlighted the abundance of saturated FAME (as C16:0 and C18:0) that favors better viscosity (flow properties) and applicability of biodiesel at low temperatures. Light microscopy and confocal laser scanning microscopy observations were employed as a fast method to monitor the vital status of cells and lipid droplet accumulation after Nile red staining in different culture conditions.
Collapse
Affiliation(s)
- Lorenza Rugnini
- LBA-Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, via Cracovia 1, 00133 Rome, Italy; (L.R.); (C.R.)
| | - Catia Rossi
- LBA-Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, via Cracovia 1, 00133 Rome, Italy; (L.R.); (C.R.)
| | - Simonetta Antonaroli
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Arnold Rakaj
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome “Tor Vergata”, via Cracovia 1, 00133 Rome, Italy;
| | - Laura Bruno
- LBA-Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, via Cracovia 1, 00133 Rome, Italy; (L.R.); (C.R.)
- Correspondence: ; Tel.: +39-3383784941
| |
Collapse
|