1
|
da Rosa DF, Macedo AJ. The genus Anoxybacillus: an emerging and versatile source of valuable biotechnological products. Extremophiles 2023; 27:22. [PMID: 37584877 DOI: 10.1007/s00792-023-01305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Thermophilic and alkaliphilic microorganisms are unique organisms that possess remarkable survival strategies, enabling them to thrive on a diverse range of substrates. Anoxybacillus, a genus of thermophilic and alkaliphilic bacteria, encompasses 24 species and 2 subspecies. In recent years, extensive research has unveiled the diverse array of thermostable enzymes within this relatively new genus, holding significant potential for industrial and environmental applications. The biomass of Anoxybacillus has demonstrated promising results in bioremediation techniques, while the recently discovered metabolites have exhibited potential in medicinal experiments. This review aims to provide an overview of the key experimental findings related to the biotechnological applications utilizing bacteria from the Anoxybacillus genus.
Collapse
Affiliation(s)
- Deisiane Fernanda da Rosa
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana (LABDIM), Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
2
|
Choudhary P, Bhowmik A, Verma S, Srivastava S, Chakdar H, Saxena AK. Multi-substrate sequential optimization, characterization and immobilization of lipase produced by Pseudomonas plecoglossicida S7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4555-4569. [PMID: 35974269 DOI: 10.1007/s11356-022-22098-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Lipases are important biocatalysts having the third largest global demand after amylases and proteases. In the present study, we have screened 56 potential lipolytic Pseudomonas strains for their lipolytic activity. Pseudomonas plecoglossicida S7 showed highest lipase production with specific activity of 70 U/mg. Statistical optimizations using Plackett Burman design and response surface methodology evaluated fourteen different media supplements including various oilcakes, carbon sources, nitrogen sources, and metal ions which led to a 2.23-fold (156.23 U/mg) increase in lipase activity. Further, inoculum size optimization increased the overall lipase activity by 2.81-folds. The lipase was active over a range of 30-50° C with a pH range (7-10). The enzyme was tolerant to various solvents like chloroform, methanol, 1-butanol, acetonitrile, and dichloromethane and retained 60% of its activity in the presence of sodium dodecyl sulfate (0.5% w/v). The enzyme was immobilized onto Ca-alginate beads which increased thermal (20-60 °C) and pH stability (5-10). The purified enzyme could successfully remove sesame oil stains and degraded upto 25.2% of diesel contaminated soil. These properties of the lipase will help in its applicability in detergent formulations, wastewater treatments, and biodegradation of oil in the environment.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226028, India
| | - Arpan Bhowmik
- ICAR-Indian Agricultural Statistics Research Institute (IASRI), New Delhi, 110012, India
| | - Shaloo Verma
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226028, India
| | - Hillol Chakdar
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India.
| | - Anil Kumar Saxena
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, 275103, India
| |
Collapse
|
3
|
Statistical optimization of lipase production from oil mill effluent by Acinetobacter sp. KSPE71. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc220119038k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigated the valorization of oil-rich residues of
coconut oil mill effluent (COME) as a potential growth medium for the
microbial production of extracellular lipase. The bacterial species isolated
from oil mill effluent, Acinetobacter sp. KSPE71 was tested for its
efficiency to grow and produce lipase in undiluted COME and 0.2 % yeast
extract and 0.2 % NH4Cl sup-plemented COME. In this connection, the process
parameters such as pH, temperature, agitation speed, and inoculum size were
optimized to maximize the production using a central composite design in the
Response surface methodology. At the optimized state of pH 7.5, 35 ?C, 150
rpm with 0.6 % inoculum size, a maximum of 3.95 U mL-1 activity was
obtained, four-fold higher than the basal condition. At this stage, 73 % of
the lipid content was degraded. The present work results imply that the oil
mill effluent can be used as a cheaper production medium for lipase and the
new isolate Acinetobacter sp. KSPE71 as a potential lipase producer. The
degradation of oil waste along with the production of the valuable product
has multiple advantages of cost reduction of lipase and environmental
concern.
Collapse
|
4
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
5
|
Screening, characterization, and optimization of lipase enzyme producing bacteria isolated from dairy effluents contaminated muddy soil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Sahoo RK, Kumari KS, Sahoo S, Das A, Gaur M, Dey S, Mohanty S, Subudhi E. Bio-statistical optimization of lipase production by thermophilic Pseudomonas formosensis and its application on oral biofilm degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Gurkok S, Ozdal M. Purification and characterization of a novel extracellular, alkaline, thermoactive, and detergent-compatible lipase from Aeromonas caviae LipT51 for application in detergent industry. Protein Expr Purif 2021; 180:105819. [PMID: 33418059 DOI: 10.1016/j.pep.2021.105819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Lipase producer bacterium isolated from Erzurum was identified as Aeromonas caviae LipT51 (GenBank ID: MN818567.1) by 16S rDNA sequencing and conventional methods. Extracellular lipase was purified by ammonium sulphate precipitation, centrifugal filtration, and anion-exchange chromatography resulting in 6.1-fold purification with 28% final yield. Molecular weight was 31.6 kDa on SDS-PAGE. Lipase was stable over a broad range of pH (6-11) and temperature (25-70 °C), and showed optimum activity at pH 9 and 60 °C. Km and Vmax for pNPP hydrolysis were 0.88 mM and 34.2 U/mg protein, respectively. Ba2+, Ca2+, Co2+, Cu2+, Fe3+, and Mg2+ increased activity, while Mn2+, Mo2+, Ni2+, Zn2+, and other additives partially decreased. Activity and stability increased with laundry detergent and slightly decreased with handwash and dishwashing detergents. Alkaline and thermostable lipase from newly isolated A. caviae has been shown for the first time to be remarkably compatible with laundry detergent and improve washing performance by enhanced oil-stain removal.
Collapse
Affiliation(s)
- Sumeyra Gurkok
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
8
|
Kumar A, Mukhia S, Kumar N, Acharya V, Kumar S, Kumar R. A Broad Temperature Active Lipase Purified From a Psychrotrophic Bacterium of Sikkim Himalaya With Potential Application in Detergent Formulation. Front Bioeng Biotechnol 2020; 8:642. [PMID: 32671041 PMCID: PMC7329984 DOI: 10.3389/fbioe.2020.00642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial lipases with activity spanning over a broad temperature and substrate range have several industrial applications. An efficient enzyme-producing bacterium Chryseobacterium polytrichastri ERMR1:04, previously reported from Sikkim Himalaya, was explored for purification and characterization of cold-adapted lipase. Optimum lipase production was observed in 1% (v/v) rice bran oil, pH 7 at 20°C. Size exclusion and hydrophobic interaction chromatography purified the enzyme up to 21.3-fold predicting it to be a hexameric protein of 250 kDa, with 39.8 kDa monomeric unit. MALDI-TOF-MS analysis of the purified lipase showed maximum similarity with alpha/beta hydrolase (lipase superfamily). Biochemical characterization of the purified enzyme revealed optimum pH (8.0), temperature (37°C) and activity over a temperature range of 5–65°C. The tested metals (except Cu2+ and Fe2+) enhanced the enzyme activity and it was tolerant to 5% (v/v) methanol and isopropanol. The Km and Vmax values were determined as 0.104 mM and 3.58 U/mg, respectively for p-nitrophenyl palmitate. Bioinformatics analysis also supported in vitro findings by predicting enzyme's broad temperature and substrate specificity. The compatibility of the purified lipase with regular commercial detergents, coupled with its versatile temperature and substrate range, renders the given enzyme a promising biocatalyst for potential detergent formulations.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Neeraj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|