1
|
Chaturvedi M, Kaur N, Alam S, Sharma S. Sustainable Approach for Degradation of Low-Density Polyethylene Plastic Waste Using Ligninolytic White Rot Fungus. J Basic Microbiol 2025; 65:e2400442. [PMID: 39623736 DOI: 10.1002/jobm.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 04/08/2025]
Abstract
Bisphenol A (BPA), an endocrine disruptor is used in manufacturing of polycarbonate plastics for food-drink packaging. In the present study, optimized set of conditions to degrade commercial grade BPA has been used and applied in degrading shredded leached low-density polyethylene (LDPE) residues and its leachate (198 µg/L BPA) using white rot fungus Hypocrea lixii. One-at-a-time method showed maximum BPA degradation of 98.73 ± 0.02% with 190.1 ± 0.2 U/L laccase and 1913.2 ± 0.3 U/L lignin peroxidase in glucose-yeast extract-malt extract-peptone (GYMP) medium supplemented with 5% sawdust, mediators-CuSO4 (0.2 mM), veratryl alcohol (0.1 mM) and Tween 80 (0.1 mM). Three sets were prepared by dissolving these optimized nutritional components in leachates-A (only leachate), B (leached LDPE residues in leachate) and C (leached LDPE residues, sawdust in leachate). All sets showed 100% degradation in 5 days. Cracks and holes in degraded LDPE pieces was confirmed by SEM analysis and changes in functional groups by FTIR. Toxicity assay of treated leachate on soil microfauna revealed the elimination of BPA as it supported sufficient microbial growth of soil bacteria. Thus, the present process provides a sustainable solution for the management of LDPE with the possibility of using treated leachate for irrigation.
Collapse
Affiliation(s)
- Mridula Chaturvedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navpreet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Samsul Alam
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Gurgaon, Haryana, India
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Sodhi AS, Bhatia S, Batra N. Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 2024; 280:135745. [PMID: 39293621 DOI: 10.1016/j.ijbiomac.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India.
| |
Collapse
|
3
|
Canli Tasar O, Tasar GE. Coproduction of inulinase and invertase by Galactomyces geotrichum in whey-based medium and evaluation of additional nutrients. Prep Biochem Biotechnol 2024; 54:974-981. [PMID: 38346212 DOI: 10.1080/10826068.2024.2313630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The purpose of this research was to evaluate the suitability of whey as an effective medium for the coproduction of inulinase and invertase by an oleaginous yeast Galactomyces geotrichum and to investigate the effects of some additional carbon and nitrogen sources. The nutritional factors and composition of the medium have a great impact on the production pathways of microbial enzymes. To deepen the research, a Taguchi design was employed to quickly scan the best conditions. First, the cheese whey was partly deproteinized and investigated as the sole medium for the yeast. The next step was performed to study the effects of inulin, sucrose and lactose as carbon sources and ammonium sulfate, yeast extract and casein as nitrogen sources. All analyses (Taguchi and ANOVA) were performed using Minitab software. Whey-based medium without any additional carbon and nitrogen sources gave inulinase and invertase activities as 54.6 U/mL and 47.4 U/mL, respectively. Maximum inulinase activity was obtained as 77.9 U/mL using inulin as the carbon source without any nitrogen source. The highest I/S ratio was found as 2.08. On the other hand, the highest invertase activity was carried out as 50.85 U/mL in whey-based medium using lactose as carbon source without any additional nitrogen source. This is the first report about partly deproteinized whey-based medium utilization for simultaneous inulinase and invertase production by G. geotrichum TS-61. Moreover, the effects of carbon and nitrogen sources were investigated in detail.
Collapse
Affiliation(s)
- Ozden Canli Tasar
- High Technology Application and Research Centre (YUTAM), Erzurum Technical University, Erzurum, Türkiye
| | | |
Collapse
|
4
|
Arumugam DP, Uthandi S. Optimization and characterization of laccase (LccH) produced by Hexagonia hirta MSF2 in solid-state fermentation using coir pith wastes (CPW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120625. [PMID: 38503232 DOI: 10.1016/j.jenvman.2024.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
The accumulation of coir pith waste, a byproduct of coconut husk processing, poses environmental and logistical challenges. An innovative and sustainable solution involves using coir pith as a substrate for solid-state fermentation (SSF). In SSF, coir pith can be converted into valuable products, such as enzymes, organic acids, and bioactive compounds. The present study aimed to evaluate laccase production by Hexagonia hirta MSF2 through SSF using the coir pith waste as substrate. Physico-chemical parameters like moisture, pH, temperature, C source, N source, and CuSO4 concentrations were pre-optimized, and optimized through RSM. Laccase activity of 1585.24 U g-1 of dry substrate was recorded by H. hirta MSF2 on coir pith containing 1 % C source, 0.5 % N source, 0.25 mM of CuSO4 concentration, moisture content of 75 % at pH 4.6 and temperature 28 °C. Subsequently, the enzyme extraction parameters including, extraction buffer, mode of extraction, and temperature were optimized. The molecular weight of laccase was 66 kDa as observed by SDS-PAGE and native-PAGE. The optimum activity of partially purified laccase was achieved at 40 °C, and pH 4.0. Increasing salt concentration and use of different inhibitors affected the laccase activity. Organic solvents like dimethyl sulphoxide (DMSO) and methanol, and metal ions like BaCl2, CaCl2, CuSO4, and MnCl2 stimulated the laccase activity. Hence, coir pith used in SSF offers a dual benefit of waste management and enzyme synthesis through an eco-friendly and cost-effective approach.
Collapse
Affiliation(s)
- Devi Priya Arumugam
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
5
|
Ensani M, Mojerlou S, Zamani SM. Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper. Braz J Microbiol 2023; 54:1565-1572. [PMID: 37572179 PMCID: PMC10484868 DOI: 10.1007/s42770-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Laccases are appealing biocatalysts for various industrial utilizations. The fungus Trametes versicolor (L.: Fr.) Pilát causes white rot in wood and has been identified as an important fungal laccase producer. To investigate laccase production and activity in T. versicolor, the native isolate was collected from the host (Quercus castaneifolia) in the forests of Guilan province, northern Iran, and then purified and identified using the molecular marker. Its ability to produce laccase enzyme in the presence of different plant substrates including sawdust and wood chips of oak, poplar, and pine was evaluated. Also, the effect of copper as an enzyme inducer was investigated in vitro. The results showed that adding the wood to the culture medium increased laccase production, and among these, oak sawdust had the greatest effect, a 1.7-fold increase from that in the control (4.8 u/l vs. 2.8 u/l). Also, the enzyme extraction time effect on the optimal recovery yield showed that the 5-h enzyme extraction cycle resulted in the highest yield of the enzyme (18.97 u/l). Moreover, adding different concentrations of copper to the fungal culture medium increased the production of laccase, and the highest amount of enzyme (92.04 u/l) was obtained with 3.5 mM of CuSO4 along with oak sawdust. Based on the results, the addition of host wood sawdust ("oak" in this work) and copper particles together stimulates the fungal growth and the laccase production during submerged cultivation of T. versicolor. Therefore, it would be a safe and cheap strategy for the commercial production of laccase by filamentous fungi.
Collapse
Affiliation(s)
- Mohammadreza Ensani
- Department of Biotechnology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Shideh Mojerlou
- Department of Horticulture and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, P. O. Box: 3619995161, Shahrood, Iran
| | - Seyedeh Masoumeh Zamani
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
6
|
Lou H, Yang C, Gong Y, Li Y, Li Y, Tian S, Zhao Y, Zhao R. Edible fungi efficiently degrade aflatoxin B 1 in cereals and improve their nutritional composition by solid-state fermentation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131139. [PMID: 36921416 DOI: 10.1016/j.jhazmat.2023.131139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to human and livestock. Laccase, a green catalyst, has been shown to effectively degrade AFB1 and can be obtained from edible fungi. The objective of this study was to screen edible fungi with high laccase activity and determine their effects on the degradation of AFB1 in cereals and the nutritional composition of the cereals through solid-state fermentation. Results from plate assays confirmed that 51 of the 55 tested edible fungi could secrete laccase. Submerged fermentation results showed that 17 of the 51 edible fungi had maximum laccase activity exceeding 100 U/L. The growth of different edible fungi varied significantly in corn, rice and wheat. More importantly, 6 edible fungi with high laccase activity and good growth could efficiently degrade AFB1 in cereals. We found for the first time that Ganoderma sinense could not only secrete highly active laccase and efficiently degrade AFB1 in corn by 92.91%, but also improve the nutritional quality of corn. These findings reveal that solid-state fermentation of cereals with edible fungi is an environmentally friendly and efficient approach for degrading AFB1 in cereals and improving the nutritional composition of cereals.
Collapse
Affiliation(s)
- Haiwei Lou
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Chuangming Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Gong
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Shuangqi Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Canli Tasar O, Tasar GE. Optimization of inulinase production using Jerusalem artichoke ( Helianthus tuberosus) as cheap substrate and comparison with pure chicory inulin. Prep Biochem Biotechnol 2022; 53:101-107. [PMID: 36264232 DOI: 10.1080/10826068.2022.2134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Jerusalem artichoke (JA) is a nutritional vegetable for human diet depending on its natural structure, especially high inulin content and it is the second inulin source for commercial production in the world, after chicory. It was aimed to investigate the inulinase production capability of Galactomyces geotrichum TS61 (GenBank accession: MN749818) using JA as an economical and effective substrate comparing with the pure chicory inulin and to optimize the fermentation using Taguchi design of experiment (DOE) in this study. Besides, the effects of sucrose on inulinase production either combined with JA or in its absence were also studied. Taguchi L16 orthogonal array was employed for optimization. Both of inulinase activities obtained from JA and pure inulin gave the maximum result at the 10th experimental run as 40.21 U/mL and 57.35 U/mL, respectively. The optimum levels were detected for each factor as, 30 g/L JA, 30 g/L sucrose, pH 5.5, and four days for time. The predicted value was found as 41.63 U/mL that was similar to the obtained result as 41.17 U/mL. Finally, inulinase activity was increased approximately 8-folds after optimization. The sucrose-free medium had similar effects with higher concentrations of JA at long incubation time. This is the first investigation about inulinase production by G. geotrichum.
Collapse
Affiliation(s)
- Ozden Canli Tasar
- High Technology Application and Research Centre, Erzurum Technical University, Erzurum, Turkey
| | | |
Collapse
|
8
|
Li S, Sun K, Latif A, Si Y, Gao Y, Huang Q. Insights into the Applications of Extracellular Laccase-Aided Humification in Livestock Manure Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7412-7425. [PMID: 35638921 DOI: 10.1021/acs.est.1c08042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional composting is a well-suited biotechnology for on-farm management of livestock manure (LM) but still leads to the release of toxic micropollutants and imbalance of nutrients. One in situ exoenzyme-assisted composting has shown promise to ameliorate the agronomical quality of end products by improving humification and polymerization. The naturally occurring extracellular laccase from microorganisms belongs to a multicopper phenoloxidase, which is verified for its versatility to tackle micropollutants and conserve organics through the reactive radical-enabled decomposition and polymerization channels. Laccase possesses an indispensable relationship with humus formation during LM composting, but its potential applications for the harmless disposal and resource utilization of LM have until now been overlooked. Herein, we review the extracellular laccase-aided humification mechanism and its optimizing strategy to maintain enzyme activity and in situ production, highlighting the critical roles of laccase in treating micropollutants and preserving organics during LM composting. Particularly, the functional effects of the formed humification products by laccase-amended composting on plant growth are also discussed. Finally, the future perspectives and outstanding questions are summarized. This critical review provides fundamental insights into laccase-boosted humification that ameliorates the quality of end products in LM composting, which is beneficial to guide and advance the practical applications of exoenzyme in humification remediation, the carbon cycle, and agriculture protection.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Abdul Latif
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| |
Collapse
|
9
|
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G. Fungal Laccases: The Forefront of Enzymes for Sustainability. J Fungi (Basel) 2021; 7:1048. [PMID: 34947030 PMCID: PMC8708107 DOI: 10.3390/jof7121048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023] Open
Abstract
Enzymatic catalysis is one of the main pillars of sustainability for industrial production. Enzyme application allows minimization of the use of toxic solvents and to valorize the agro-industrial residues through reuse. In addition, they are safe and energy efficient. Nonetheless, their use in biotechnological processes is still hindered by the cost, stability, and low rate of recycling and reuse. Among the many industrial enzymes, fungal laccases (LCs) are perfect candidates to serve as a biotechnological tool as they are outstanding, versatile catalytic oxidants, only requiring molecular oxygen to function. LCs are able to degrade phenolic components of lignin, allowing them to efficiently reuse the lignocellulosic biomass for the production of enzymes, bioactive compounds, or clean energy, while minimizing the use of chemicals. Therefore, this review aims to give an overview of fungal LC, a promising green and sustainable enzyme, its mechanism of action, advantages, disadvantages, and solutions for its use as a tool to reduce the environmental and economic impact of industrial processes with a particular insight on the reuse of agro-wastes.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Olga Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Tatyana Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| |
Collapse
|
10
|
High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-solid and solid-state anaerobic digestion are technologies capable of achieving high reactor productivity. The high organic load admissible for this type of configuration makes these technologies an ideal ally in the conversion of waste into bioenergy. However, there are still several factors associated with these technologies that result in low performance. The economic model based on a linear approach is unsustainable, and changes leading to the development of a low-carbon model with a high degree of circularity are necessary. Digestion technology may represent a key driver leading these changes but it is undeniable that the profitability of these plants needs to be increased. In the present review, the digestion process under high-solid-content configurations is analyzed and the different strategies for increasing reactor productivity that have been studied in recent years are described. Percolating reactor configurations and the use of low-cost adsorbents, nanoparticles and micro-aeration seem the most suitable approaches to increase volumetric production and reduce initial capital investment costs.
Collapse
|