1
|
Shi P, Ruan Y, Zhong C, Teng L, Ke L, Yao H. Identification of pharmacokinetic markers for safflower injection using a combination of system pharmacology, multicomponent pharmacokinetics, and quantitative proteomics study. Front Pharmacol 2022; 13:1062026. [PMID: 36506545 PMCID: PMC9727182 DOI: 10.3389/fphar.2022.1062026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Safflower injection (SI), a water-extract preparation from safflower (Carthamus tinctorius L.), has been widely used for the treatment of cardio-cerebrovascular diseases. This work aims to develop an approach for identifying PK markers of cardiovascular herbal medicines using SI as a case study. Firstly, qualitative and quantitative analyses were performed to reveal ingredients of the preparation via HPLC-MS. Subsequently, multiple PK ingredients and integrated PK investigations were carried out to ascertain ingredients with favorable PK properties (e.g., easily detected at conventional PK time points and high system exposure) for the whole preparation. Next, ingredients against cardiovascular diseases (CVDs) in the preparation were predicted with target fishing and system pharmacology studies. Finally, ingredients with favorable PK properties, satisfactory PK representativeness for the preparation, and high relevance to CVDs were considered as potential PK markers. Their therapeutic effect was further evaluated using the H2O2-induced H9c2 cardiomyocyte-injured model and a proteomics study to identify objective PK markers. As results, it disclosed that SI mainly contains 11 ingredients. Among them, five ingredients, namely, hydroxysafflor yellow A (HSYA), syringin (SYR), p-coumaric acid (p-CA), scutellarin (SCU), and p-hydroxybenzaldehyde (p-HBA), showed favorable PK properties. HSYA, SYR, and rutin (RU) were predicted to show high relevance to CVDs and screened as potential PK markers. However, only HSYA and SYR were confirmed as therapeutic ingredients against CVDs. Combined with these findings, only HSYA demonstrated satisfactory representativeness on PK properties and therapeutic effects of multiple ingredients of the preparation, thereby indicating that HSYA is a potential PK marker for the SI. The results of this study can provide a reference for the characterization of PK markers for traditional Chinese medicines.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Peiying Shi, ; Hong Yao, ,
| | - Yijun Ruan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Linglin Teng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China,*Correspondence: Peiying Shi, ; Hong Yao, ,
| |
Collapse
|
2
|
Huang P, Zhou W, Chen H, Zhou H, Duan S, Wan H, He Y. Optimized separation of anhydrosafflor yellow B from safflower by high-speed counter-current chromatography and evaluation of its cardio-protective effect. Food Funct 2021; 12:9360-9371. [PMID: 34606545 DOI: 10.1039/d1fo01767e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anhydrosafflor yellow B (AHSYB) is a major active water-soluble pigment in Safflower, but it has not received enough attention yet. In this study, high-speed counter-current chromatography (HSCCC) was used to prepare AHSYB from safflower. The parameters of the separation process were optimized by response surface methodology for the first time. The entropy weight method (EWM) was applied to calculate the information entropy and the weight of five indexes, and then figure out a comprehensive index of the HSCCC separation effect. Under the optimized separation conditions, a HSCCC apparatus speed of 850 rpm, a flow rate of 2 mL min-1 for the mobile phase and a separation temperature of 40 °C for AHSYB were achieved with a purity of 98%. Furthermore, AHSYB was found to have cardio-protective effects by inhibiting apoptosis via the mitochondrial-mediated pathway in oxygen-glucose deprivation/reoxygenation-induced H9c2 cells. This research provides good method guides for the rapid and efficient separation of active compounds from food-grade Chinese herb medicines.
Collapse
Affiliation(s)
- Ping Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Wenjun Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haiyang Chen
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Shaobo Duan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
3
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Yu JW, Yuan HW, Bao LD, Si LG. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol Divers 2020; 25:233-248. [PMID: 32130644 PMCID: PMC7870775 DOI: 10.1007/s11030-020-10055-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
Abstract Piperine is the main active component of Piper longum L., which is also the main component of anti-sciatica Mongolian medicine Naru Sanwei pill. It has many pharmacological activities such as anti-inflammatory and immune regulation.
This paper aims to preliminarily explore the potential mechanism of piperine in the treatment of sciatica through network pharmacology and molecular docking. TCMSP, ETCM database and literature mining were used to collect the active compounds of Piper longum L. Swiss TargetPrediction and SuperPred server were used to find the targets of compounds. At the same time, CTD database was used to collect the targets of sciatica. Then the above targets were compared and analyzed to select the targets of anti-sciatica in Piper longum L. The Go (gene ontology) annotation and KEGG pathway of the targets were enriched and analyzed by Metascape database platform. The molecular docking between the effective components and the targets was verified by Autodock. After that, the sciatica model of rats was established and treated with piperine. The expression level of inflammatory factors and proteins in the serum and tissues of rat sciatic nerve were detected by ELISA and Western blot. HE staining and immunohistochemistry were carried out on the sciatica tissues of rats. The results showed that Piper longum L. can regulate the development of sciatica and affect the expressions of PPARG and NF-kB1 through its active ingredient piperine, and there is endogenous interaction between PPARG and NF-kB1. Graphic abstract ![]()
Collapse
Affiliation(s)
- Jiu-Wang Yu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Hong-Wei Yuan
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China
| | - Li-Dao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia, People's Republic of China.
| | - Leng-Ge Si
- Mongolia Medical School, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, People's Republic of China
| |
Collapse
|