1
|
Wang H, Chung E. Revisiting experimental models of erectile dysfunction and their value in drug discovery and development. Expert Opin Drug Discov 2025; 20:499-516. [PMID: 40110856 DOI: 10.1080/17460441.2025.2482065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a common condition that often signals underlying endothelial dysfunction, although the underlying causative factor(s) are likely complex and multifactorial. Various animal models have been developed to provide a research platform to study ED and served as an important basis for the discovery and subsequent development of novel therapeutic drugs for ED. AREAS COVERED The review article provides an overview of various animal models in ED research with an emphasis on important drug target discovery relating to each specific experimental model. The authors highlight translation from basic science research to major preclinical and clinical studies in this evolving field of ED research. EXPERT OPINION Animal models simulate the pathological features of various types of ED and clarify their molecular mechanisms. These mechanisms aid in discovering drug targets, while established ED models also provide a basis for validating drug efficacy, safety, and specific action mechanisms. The development of techniques in detection methods, cellular experimental, and omics has a profound impact on disease prediction, model evaluation, and optimization of therapeutic modalities. On this basis, many drug therapies targeting these ED-related mechanisms, especially in the nitric oxide/cyclic guanosine monophosphate pathways have been applied in preclinical studies. However, focusing on drug development for those types of ED where phosphodiesterase 5 inhibitor therapy is limited may be more valuable.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- AndroUrology Centre, Brisbane, QLD, Australia
- AndroUrology Centre, Sydney, NSW, Australia
| |
Collapse
|
2
|
Hari Priya VM, Ganapathy A A, Veeran MG, Raphael M S, Kumaran A. Nanotechnology-based drug delivery platforms for erectile dysfunction: addressing efficacy, safety, and bioavailability concerns. Pharm Dev Technol 2024; 29:996-1015. [PMID: 39392251 DOI: 10.1080/10837450.2024.2414379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Erectile dysfunction (ED), is a common and multidimensional sexual disorder, which comprises changes among any of the processes of the erectile response such as organic, relational, and psychological. However, both endocrine and nonendocrine causes of ED produce substantial health implications including depression and anxiety due to poor sexual performance, eventually affecting man's life eminence. Marginally invasive interventions following ED consist of lifestyle modifications, oral drugs, injections, vacuum erection devices, etc. Nevertheless, these conventional treatment regimens follow certain drawbacks such as efficacy and safety issues, and navigate to the development of novel therapeutic approaches such as nanomedicine for ED management. Nanotechnology-centred drug delivery platforms are being explored to minimize these limitations with better in vitro and in vivo effectiveness. Moreover, nanomedicine and nanocarrier-linked approaches are rapidly developing science in the nanoscale range, which contributes to site-specific delivery in a controlled manner and has generated considerable interest prominent to their potential to enhance bioavailability, decrease side effects, and avoidance of first-pass metabolism. This review provides an overview of recent discoveries regarding various nanocarriers and nano-delivery methods, along with current trends in the clinical aspects of ED. Additionally, strategies for clinical translation have been incorporated.
Collapse
Affiliation(s)
- Vijayakumari Mahadevan Hari Priya
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anand Ganapathy A
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Midhu George Veeran
- Corporate Research and Development Centre (CRDC), HLL Lifecare Ltd, Akkulam, Thiruvananthapuram, India
| | - Shyni Raphael M
- Department of Chemistry, Government College for Women, Thiruvananthapuram, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Rana H, Panchal M, Thakkar V, Gandhi T, Dholakia M. Investigating in-vitro functionality and in-vivo taste assessment of eco-friendly Tadalafil Pastilles. Heliyon 2024; 10:e29543. [PMID: 38660288 PMCID: PMC11040062 DOI: 10.1016/j.heliyon.2024.e29543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Tadalafil (TDL) has poor bioavailability due to the less aqueous solubility and bitter taste. Oral solid dosage forms, especially tablets, have a broad market worldwide. Constraints of tablets are a long process, pollution, high processing cost, and requiring more excipient. The research was performed to optimize an eco-friendly immediate-acting pastille of TDL to put forward an alternate formulation to a tablet using advanced data mining tools. Another objective is to assess the taste masking of TDL using the Brief Access Taste Aversion (BATA) model. The amount of PEG-4000, Polyox N-10, and Kyron T-314 were chosen as critical material attributes from failure mode effect analysis. Box-Behnken design (BBD) was utilized to optimize the pastilles and ascertained the significant impact of chosen variables on disintegration time and % CDR at 10 min. The control strategy and optimal region were located using an overlay plot. The pastilles were able to release the drug within 15 min due to faster disintegration. The formulated pastilles were of uniform size, shape, and mechanical strength. The bitter taste of TDL was masked and confirmed by the BATA model. The newer formulation may be helpful in the industry due to its eco-friendly, single-step, and economical process. It unlocks a new direction in the field of oral solid dosage form as an alternative to tablets.
Collapse
Affiliation(s)
- Hardik Rana
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Meghna Panchal
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Tejal Gandhi
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Mansi Dholakia
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad, Gujarat, India
| |
Collapse
|
4
|
Tang M, Xin Y, Zhao Y, Zhang X, Zhang M, Sun D, Zhu X, Yao Y, Fei W, Zheng C. Placenta-anchored tadalafil liposomes rescues intrauterine growth restriction through continuous placental blood perfusion improvement. J Control Release 2024; 368:466-480. [PMID: 38452820 DOI: 10.1016/j.jconrel.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Physiological or pathological hypoperfusion of the placenta is one of the main causes of intrauterine growth restriction (IUGR) which poses a significant risk to the health of the fetus and newborn. Tadalafil, a 5-type phosphodiesterase inhibitor, has previously been found to improve the symptoms of IUGR in various clinical studies. Unfortunately, its clinical utility is hindered by its limited water solubility, rapid metabolism, and lack of specific distribution in target tissues rendering tadalafil unable to maintain long-term placental perfusion. In this study, iRGD-modified tadalafil-loaded liposomes (iRGD-lipo@Tad) featuring a size of approximately 480 nm were designed to rectify the shortcomings of tadalafil. The prepared iRGD-lipo@Tad exhibited superior stability, sustained drug release capacity, and low cytotoxicity. The fluorescence study, tissue slice study, and drug biodistribution study together demonstrated the placenta-anchored ability of iRGD-modified liposomes. This was achieved by a dual approach consisting of the iRGD-mediated placenta-targeting effect and special particle size-mediated placenta resident effect. The pharmacokinetic study revealed a significant improvement in the in vivo process of tadalafil encapsulated by the iRGD-modified liposomes. In comparison to the tadalafil solution, the peak plasma concentration of iRGD-lipo@Tad was significantly increased, and the area under the curve was increased by about 7.88 times. In the pharmacodynamic study, iRGD-lipo@Tad achieved a continuous and efficient improvement of placental blood perfusion. This was achieved by decreasing the ratio of plasma soluble fms-like tyrosine kinase to placental growth factor and increasing the levels of cyclic guanosine monophosphate and nitric oxide. Consequently, iRGD-lipo@Tad resulted in a significant increase in embryo weight and a reduction in the miscarriage rate of N-Nitro-L-arginine methyl ester-induced IUGR pregnant mice without detectable toxicity. In summary, the nanotechnology-assisted therapy strategy presented here not only overcomes the limitations of tadalafil in the clinical treatment of IUGR but also offers new avenues to address the treatment of other placenta-originated diseases.
Collapse
Affiliation(s)
- Miao Tang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaojun Zhu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85:104526. [DOI: 10.1016/j.jddst.2023.104526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Wang X, Zhang Q, Zhou J, Xiao Z, Liu J, Deng S, Hong X, Huang W, Cai M, Guo Y, Huang J, Wang Y, Lin L, Zhu K. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:jitc-2022-006493. [PMID: 36813307 PMCID: PMC9950981 DOI: 10.1136/jitc-2022-006493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) monotherapy provides poor survival benefit in hepatocellular carcinoma (HCC) due to ICB resistance caused by immunosuppressive tumor microenvironment (TME) and drug discontinuation resulting from immune-related side effects. Thus, novel strategies that can simultaneously reshape immunosuppressive TME and ameliorate side effects are urgently needed. METHODS Both in vitro and orthotopic HCC models were used to explore and demonstrate the new role of a conventional, clinically used drug, tadalafil (TA), in conquering immunosuppressive TME. In detail, the effect of TA on M2 polarization and polyamine metabolism in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was identified. After making clear the aforementioned immune regulatory effect of TA, we introduced a nanomedicine-based strategy of tumor-targeted drug delivery to make better use of TA to reverse immunosuppressive TME and overcome ICB resistance for HCC immunotherapy. A dual pH-sensitive nanodrug simultaneously carrying both TA and programmed cell death receptor 1 antibody (aPD-1) was developed, and its ability for tumor-targeted drug delivery and TME-responsive drug release was evaluated in an orthotopic HCC model. Finally, the immune regulatory effect, antitumor therapeutic effect, as well as side effects of our nanodrug combining both TA and aPD-1 were analyzed. RESULTS TA exerted a new role in conquering immunosuppressive TME by inhibiting M2 polarization and polyamine metabolism in TAMs and MDSCs. A dual pH-sensitive nanodrug was successfully synthesized to simultaneously carry both TA and aPD-1. On one hand, the nanodrug realized tumor-targeted drug delivery by binding to circulating programmed cell death receptor 1-positive T cells and following their infiltration into tumor. On the other hand, the nanodrug facilitated efficient intratumoral drug release in acidic TME, releasing aPD-1 for ICB and leaving TA-encapsulated nanodrug to dually regulate TAMs and MDSCs. By virtue of the combined application of TA and aPD-1, as well as the efficient tumor-targeted drug delivery, our nanodrug effectively inhibited M2 polarization and polyamine metabolism in TAMs and MDSCs to conquer immunosuppressive TME, which contributed to remarkable ICB therapeutic efficacy with minimal side effects in HCC. CONCLUSIONS Our novel tumor-targeted nanodrug expands the application of TA in tumor therapy and holds great potential to break the logjam of ICB-based HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jingwen Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Khalil HMA, El Henafy HMA, Khalil IA, Bakr AF, Fahmy MI, Younis NS, El-Shiekh RA. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. TOXICS 2023; 11:159. [PMID: 36851034 PMCID: PMC9961500 DOI: 10.3390/toxics11020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Cisplatin (Cis) is a potent chemotherapeutic agent; however, it is linked with oxidative stress, inflammation, and apoptosis, which may harmfully affect the brain. Hypericum perforatum L. (HP L.) is a strong medicinal plant, but its hydrophobic polyphenolic compounds limit its activity. Therefore, our study aimed to investigate the neuroprotective action of HP L. and its nanoemulsion (NE) against Cis-induced neurotoxicity. The prepared HP.NE was subjected to characterization. The droplet size distribution, surface charge, and morphology were evaluated. In addition, an in vitro dissolution study was conducted. Compared to Cis-intoxicated rats, HP L. and HP.NE-treated rats displayed improved motor activity and spatial working memory. They also showed an increase in their antioxidant defense system and a reduction in the levels of pro-inflammatory cytokines in the brain. Moreover, they showed an increase in the expression levels of the PON-3 and GPX genes, which are associated with a reduction in the brain levels of COX-2 and TP-53. These findings were confirmed by reducing the immunohistochemical expression of nuclear factor kappa (NF-ƘB) and enhanced Ki-67 levels. In conclusion, HP L. is a promising herb and could be used as an adjuvant candidate to ameliorate chemotherapeutic-induced neurotoxicity. Moreover, HP.NE has superior activity in lessening Cis-induced oxidative stress, inflammation, and apoptosis in brain tissue.
Collapse
Affiliation(s)
- Heba M. A. Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hanan M. A. El Henafy
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza 3230911, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), Giza 12582, Egypt
| | - Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed I. Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 2834, Egypt
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
8
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
9
|
Elbardisy B, Boraie N, Galal S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022; 14:pharmaceutics14122717. [PMID: 36559211 PMCID: PMC9784672 DOI: 10.3390/pharmaceutics14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH.
Collapse
Affiliation(s)
- Bassant Elbardisy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
- Correspondence: or
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
10
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Boosting Tadalafil Bioavailability via Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box-Behnken Optimization and Assessment. Pharmaceutics 2022; 14:pharmaceutics14122592. [PMID: 36559086 PMCID: PMC9781150 DOI: 10.3390/pharmaceutics14122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Tadalafil (TAD) is a poorly soluble, phosphodiesterase inhibitor used to treat erectile dysfunction. The primary goal of this project was to prepare nano-emulsions using ultrasonic technology to address TAD bioavailability concerns. The Box−Behnken design was employed to find prominent correlations between factors impacting the sono-emulsification process. The emulsifier concentration, amplitude level, and ultrasonication time were the independent factors, whereas the average droplet size (ADS) and polydispersity index (PDI) were designated as the response variables. TAD-loaded nano-emulsions (93−289 nm) were generated and the emulsifier concentration showed a crucial role in directing emulsion droplet size. The model desirability function was utilized to optimize a nano-emulsion with a small ADS (99.67 ± 7.55 nm) and PDI (0.45 ± 0.04) by adjusting the emulsifiers concentration, amplitude level, and ultrasonication time at 9.85%, 33%, 49 s, respectively. The optimized nano-emulsions did not demonstrate any precipitation or phase separation after stability stress tests. TAD jellies were formulated based on the optimized nano-emulsion and subjected to in vitro evaluation for physical characteristics; TAD content, pH, spreadability, viscosity, syneresis, and taste-masking ability. An optimized nano-emulsion-based jelly (NEJ) formulation showed more than 96% drug dissolution in 30 min relative to 14% for the unprocessed TAD. In vivo assessment of NEJ in experimental rats demonstrated a significant enhancement (p < 0.05) of TAD bioavailability with an AUC0−24h of 2045 ± 70.2 vs. 259.9 ± 17.7 ng·h·mL−1 for the unprocessed TAD. Storage stability results revealed that NEJ remained stable with unremarkable changes in properties for 3 months. Overall, NEJ can be regarded as a successful therapeutic option for TAD administration with immediate-release properties and improved bioavailability.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-50-286-4018; Fax: +966-4-847-5027
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
11
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
12
|
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2022; 29:1466-1485. [PMID: 35002385 PMCID: PMC8720818 DOI: 10.1016/j.jsps.2021.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based in-situ gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, in-vitro drug release and compatibility studies. Selected NEs were incorporated into different in-situ gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for ex-vivo permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of −12.4 to −3.11 mV with enhanced in-vitro CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. Ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.
Collapse
Affiliation(s)
- Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Corresponding author.
| | - Gehan F. Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hanaa A. El-ghamry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Zou L, Ding W, Huang Q, Yang X, Li J, Huang T, Li Z, Lin S, Feng J. Andrographolide/ Phospholipid/ Cyclodextrin complex-loaded Nanoemulsion: Preparation, Optimization, <i>in vitro</i> and <i>in vivo </i>Evaluation. Biol Pharm Bull 2022; 45:1106-1115. [DOI: 10.1248/bpb.b22-00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Qiuyan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Tianyan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Zeyu Li
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Si Lin
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine
| |
Collapse
|
14
|
Du L, Jia JH, Xue WY, Qi JC. Effect of tadalafil combined with atorvastatin on hemodynamics and sexual function in middle-aged and elderly patients with hyperlipidemia complicated with erectile dysfunction. Pak J Med Sci 2021; 37:1965-1971. [PMID: 34912427 PMCID: PMC8613049 DOI: 10.12669/pjms.37.7.4257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: To evaluate the effect and clinical significance of tadalafil combined with atorvastatin on hemodynamics and sexual function in middle-aged and elderly patients with hyperlipidemia complicated with Erectile dysfunction (ED). Methods: Eighty patients with hyperlipidemia complicated with ED who were treated at The Second Hospital of Hebei Medical University from January 2019 to June 2020 were selected. Using a completely randomized design experimental method, these 80 patients were randomly divided into two groups: the experimental group and the control group, with 40 cases in each group. The control group was treated with a single drug, atorvastatin calcium, while the experimental group was given tadalafil orally on the basis of the control group for 3 months. Changes in the levels of inflammatory factors such as IL-6, TNF and CRP, adverse drug reactions, changes in hemodynamic indicators such as HSV, LSV, PSV, HCT and ESR before and after treatment, as well as changes in sexual function after treatment were compared and analyzed between the two groups. Results: TNF-a, CRP and IL-6 in the experimental group were significantly lower than those in the control group after treatment, with statistically significant differences (p<0.05). There was no significant difference in the incidence of adverse drug reactions between the two groups (p=0.18). After treatment, hemodynamic indexes and sexual function indexes of the experimental group were significantly improved compared with those in the control group, with statistically significant differences (p<0.05). Conclusion: A significant improvement effect can be achieved by tadalafil combined with atorvastatin on hemodynamics and sexual function in middle-aged and elderly patients with hyperlipidemia complicated with ED. At the same time, the combination of the two has synergism on inflammatory factors and blood rheology, and the incidence of adverse reactions is not significantly increased.
Collapse
Affiliation(s)
- Lei Du
- Lei Du, Department of Urology, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, Hebei, China
| | - Jiang-Hua Jia
- Jiang-hua Jia, Department of Urology, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, Hebei, China
| | - Wen-Yong Xue
- Wen-yong Xue, Department of Urology, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, Hebei, China
| | - Jin-Chun Qi
- Jin-chun Qi, Department of Urology, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|
17
|
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11:925-940. [PMID: 33996407 PMCID: PMC8105874 DOI: 10.1016/j.apsb.2021.02.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
The management of the central nervous system (CNS) disorders is challenging, due to the need of drugs to cross the blood‒brain barrier (BBB) and reach the brain. Among the various strategies that have been studied to circumvent this challenge, the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results. In addition, the encapsulation of the drugs in lipid-based nanocarriers, such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) or nanoemulsions (NEs), can improve nose-to-brain transport by increasing the bioavailability and site-specific delivery. This review provides the state-of-the-art of in vivo studies with lipid-based nanocarriers (SLNs, NLCs and NEs) for nose-to-brain delivery. Based on the literature available from the past two years, we present an insight into the different mechanisms that drugs can follow to reach the brain after intranasal administration. The results of pharmacokinetic and pharmacodynamics studies are reported and a critical analysis of the differences between the anatomy of the nasal cavity of the different animal species used in in vivo studies is carried out. Although the exact mechanism of drug transport from the nose to the brain is not fully understood and its effectiveness in humans is unclear, it appears that the intranasal route together with the use of NLCs, SLNs or NEs is advantageous for targeting drugs to the brain. These systems have been shown to be more effective for nose-to-brain delivery than other routes or formulations with non-encapsulated drugs, so they are expected to be approved by regulatory authorities in the coming years.
Collapse
Affiliation(s)
- Cláudia Pina Costa
- UCIBIO/REQUIMTE, Medtech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra 3004-504, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo Das Ciências da Saúde, Coimbra 3000-548, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, Medtech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, Medtech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
- FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, Porto 4249-004, Portugal
| |
Collapse
|
18
|
Liu SZ, Feng DC, Liu ZH, Liang JY, Ren ZJ, Zhou C, Wu K, Zhang FX, Zhang F, Lu YP, Wang XD. Development of nanotechnology in andrology. Transl Androl Urol 2020; 9:702-708. [PMID: 32420177 PMCID: PMC7214986 DOI: 10.21037/tau.2020.01.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since first introduced in 1980s, nanotechnology has always been the eye-catching point as its providing us with new approaches to explore the microscopic world. Many nanotechnology-associated novel technologies have been brought into clinical use in the past decades and uncountable patients benefited from them, which convinces us of a bright prospect of nanotechnology in the field of medicine. In this review, literatures concerning nanotechnology applications in andrology were retrieved and we made a comprehensive discussion on drug delivery, gene therapy and stem cell therapy use in andrology, which calls for the engagement of nanotechnology.
Collapse
Affiliation(s)
- Sheng-Zhuo Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - De-Chao Feng
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Hong Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Yu Liang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zheng-Ju Ren
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Zhou
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kan Wu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fu-Xun Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ping Lu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian-Ding Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Güven E. Lipid-based nanoparticles in the treatment of erectile dysfunction. Int J Impot Res 2020; 32:578-586. [PMID: 32005938 DOI: 10.1038/s41443-020-0235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Erectile dysfunction (ED) is a common disorder among men, with significant public health implications. Current therapies have certain limitations including efficacy and safety issues, necessitating the development of novel therapeutic strategies for ED. Nanotechnology-based drug delivery systems are being explored to overcome these limitations with promising in vitro and in vivo efficacies. In particular, lipid-based nanoparticles have generated considerable interest owing to their potential to enhance drug bioavailability, and decrease side effects and drug susceptibility to metabolism. This review summarizes the recent findings using lipid-based nanoparticles in ED therapy.
Collapse
Affiliation(s)
- Eylem Güven
- Nanotechnology and Nanomedicine Division, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|