1
|
Yang R, Ding Q, Ding J, Zhu L, Pei Q. Physiologically based pharmacokinetic modeling in obesity: applications and challenges. Expert Opin Drug Metab Toxicol 2024:1-12. [PMID: 39101366 DOI: 10.1080/17425255.2024.2388690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Rising global obesity rates pose a threat to people's health. Obesity causes a series of pathophysiologic changes, making the response of patients with obesity to drugs different from that of nonobese, thus affecting the treatment efficacy and even leading to adverse events. Therefore, understanding obesity's effects on pharmacokinetics is essential for the rational use of drugs in patients with obesity. AREAS COVERED Articles related to physiologically based pharmacokinetic (PBPK) modeling in patients with obesity from inception to October 2023 were searched in PubMed, Embase, Web of Science and the Cochrane Library. This review outlines PBPK modeling applications in exploring factors influencing obesity's effects on pharmacokinetics, guiding clinical drug development and evaluating and optimizing clinical use of drugs in patients with obesity. EXPERT OPINION Obesity-induced pathophysiologic alterations impact drug pharmacokinetics and drug-drug interactions (DDIs), altering drug exposure. However, there is a lack of universal body size indices or quantitative pharmacology models to predict the optimal for the patients with obesity. Therefore, dosage regimens for patients with obesity must consider individual physiological and biochemical information, and clinically individualize therapeutic drug monitoring for highly variable drugs to ensure effective drug dosing and avoid adverse effects.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Qin Ding
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| | - Junjie Ding
- Center for Tropical Medicine and Global Health, Oxford Medical School, Oxford, UK
| | - Liyong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy, The Third XiangyHospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Chen J, Huang L, Zeng L, Jiang Z, Xiong M, Jia ZJ, Cheng G, Miao L, Zhao L, Zhang L. The reference range of lamotrigine in the treatment of epilepsy in children: a systematic review. Eur J Clin Pharmacol 2024; 80:1-10. [PMID: 37906300 PMCID: PMC10781876 DOI: 10.1007/s00228-023-03562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/31/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE This study intends to assess the reference range of lamotrigine concentration for treating childhood epilepsy. METHODS PubMed, Ovid-Embase, The Cochrane Library, CNKI, WanFang data and VIP databases were searched from database inception to January 2022. RCT, cohort study, case-control study, cross-sectional study that estimated the reference range of lamotrigine for children epilepsy treatment were included. The data extracted included basic information, statistical methods, data type, and results of reference range. Descriptive analysis was performed for them. RESULTS 8 studies were included and estimated the reference range, and all of them were calculated based on efficacy data and/or concentration data. Statistical methods including ROC curve, concentration-effect curve, mean ± standard deviation, 95% confidence interval and percentile interval were utilized. For lamotrigine monotherapy, the lower limits ranged from 2.06 mg/L to 3.99 mg/L, and the upper limits ranged from 8.43 mg/L to 9.08 mg/L, showing basic consistency. However, for lamotrigine concomitant with valproate, the lower limits ranged from 2.00 mg/L to 8.00 mg/L, and the upper limit was 11.50 mg/L, for lamotrigine concomitant with other antiepileptics, the lower limits ranged from 1.00 mg/L to 3.09 mg/L, and the upper limits varied from 5.90 mg/L to 16.24 mg/L, indicating inconsistency. CONCLUSION Several studies have estimated the reference range of lamotrigine for childhood epilepsy, while controversy exist and no studies have determined the upper limit of the range based on safety data. To establish the optimal reference range, further high-quality studies are necessary that consider both efficacy and safety data.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhimei Jiang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Meiping Xiong
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhi-Jun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Lenoir C, Terrier J, Gloor Y, Gosselin P, Daali Y, Combescure C, Desmeules JA, Samer CF, Reny JL, Rollason V. Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting. J Pers Med 2022; 12:jpm12040526. [PMID: 35455642 PMCID: PMC9028714 DOI: 10.3390/jpm12040526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Apixaban and rivaroxaban are the two most prescribed direct factor Xa inhibitors. With the increased use of DOACs in real-world settings, safety and efficacy concerns have emerged, particularly regarding their concomitant use with other drugs. Increasing evidence highlights drug−drug interactions with CYP3A/P-gp modulators leading to adverse events. However, current recommendations for dose adjustment do not consider CYP3A/P-gp genotype and phenotype. We aimed to determine their impact on apixaban and rivaroxaban blood exposure. Three-hundred hospitalized patients were included. CYP3A and P-gp phenotypic activities were assessed by the metabolic ratio of midazolam and AUC0−6h of fexofenadine, respectively. Relevant CYP3A and ABCB1 genetic polymorphisms were also tested. Capillary blood samples collected at four time-points after apixaban or rivaroxaban administration allowed the calculation of pharmacokinetic parameters. According to the developed multivariable linear regression models, P-gp activity (p < 0.001) and creatinine clearance (CrCl) (p = 0.01) significantly affected apixaban AUC0−6h. P-gp activity (p < 0.001) also significantly impacted rivaroxaban AUC0−6h. The phenotypic switch (from normal to poor metabolizer) of P-gp led to an increase of apixaban and rivaroxaban AUC0−6h by 16% and 25%, respectively, equivalent to a decrease of 38 mL/min in CrCl according to the apixaban model. CYP3A phenotype and tested SNPs of CYP3A/P-gp had no significant impact. In conclusion, P-gp phenotypic activity, rather than known CYP3A/P-gp polymorphisms, could be relevant for dose adjustment.
Collapse
Affiliation(s)
- Camille Lenoir
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jean Terrier
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Yvonne Gloor
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
| | - Pauline Gosselin
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Christophe Combescure
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Health and Community Medicine, Division of Clinical Epidemiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Jules Alexandre Desmeules
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Flora Samer
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Jean-Luc Reny
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Victoria Rollason
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Correspondence:
| |
Collapse
|
4
|
Use of Levetiracetam in Epileptic Dogs with Chronic Kidney Disease: A Retrospective Study. Vet Sci 2021; 8:vetsci8110263. [PMID: 34822636 PMCID: PMC8617888 DOI: 10.3390/vetsci8110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In human medicine, doses of levetiracetam (LEV) are individualized for patients with epilepsy, depending on the status of the patient’s renal function. However, there are not reports on the individualized dosing of LEV for small animals. The aim of this study is to investigate whether a dose adjustment of LEV is needed in dogs with chronic kidney disease (CKD). Patient databases were searched, and 37 dogs with seizures or epilepsy were retrospectively included in this study. Based on pre-existing CKD, patients were divided into a CKD group (n = 20) and a non-CKD group (n = 17). We collected kidney panels before and after LEV treatment. Side-effects were monitored for 1 month after the start of LEV administration. In the CKD group, more dogs developed adverse effects (85%) than in the non-CKD group (52.94%). After LEV administration, an increase in blood urea nitrogen and/or serum creatinine was more often reported in the CKD group than it was in the non-CKD group. Our data indicate that in dogs with seizures or epilepsy with pre-existing CKD, an LEV dose-adjustment is needed. During LEV treatment, CKD patients should be monitored for side-effects and may require laboratory evaluation of renal function.
Collapse
|
5
|
Michalakis K, Panagiotou G, Ilias I, Pazaitou‐Panayiotou K. Obesity and COVID-19: A jigsaw puzzle with still missing pieces. Clin Obes 2021; 11:e12420. [PMID: 33073512 PMCID: PMC7645965 DOI: 10.1111/cob.12420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Apart from posing various mechanical and medical issues compromising general health, obesity is a major factor for respiratory tract infections, due to specific inflammation and immunological compromise. The burden of obesity on morbidity and mortality of SARS-CoV-2 infection/COVID-19 is considerable. Herein, we aimed to search the literature and present to the readers pathophysiologic pathways that may associate obesity and COVID-19. We present potential mechanisms, which might partly explain why patients with obesity are more prone to suffer from respiratory infections in the context of COVID-19. Better understanding of these pathways could eventually guide management strategies and therapies for COVID-19 in the future.
Collapse
Affiliation(s)
| | - Grigorios Panagiotou
- 1st Laboratory of PharmacologySchool of Medicine, Aristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and MetabolismElena Venizelou HospitalAthensGreece
| | | |
Collapse
|
6
|
Cadilla R, Deaton DN, Do Y, Elkins PA, Ennulat D, Guss JH, Holt J, Jeune MR, King AG, Klapwijk JC, Kramer HF, Kramer NJ, Laffan SB, Masuria PI, McDougal AV, Mortenson PN, Musetti C, Peckham GE, Pietrak BL, Poole C, Price DJ, Rendina AR, Sati G, Saxty G, Shearer BG, Shewchuk LM, Sneddon HF, Stewart EL, Stuart JD, Thomas DN, Thomson SA, Ward P, Wilson JW, Xu T, Youngman MA. The exploration of aza-quinolines as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors with low brain exposure. Bioorg Med Chem 2020; 28:115791. [PMID: 33059303 DOI: 10.1016/j.bmc.2020.115791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.
Collapse
Affiliation(s)
- Rodolfo Cadilla
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - David N Deaton
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA.
| | - Young Do
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Patricia A Elkins
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Daniela Ennulat
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Jeffrey H Guss
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Jason Holt
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Michael R Jeune
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Andrew G King
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Jan C Klapwijk
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - H Fritz Kramer
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Nicholas J Kramer
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Susan B Laffan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Paresh I Masuria
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Alan V McDougal
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Caterina Musetti
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Gregory E Peckham
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Beth L Pietrak
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Chuck Poole
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Daniel J Price
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Alan R Rendina
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Girish Sati
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Gordon Saxty
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Barry G Shearer
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Lisa M Shewchuk
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Helen F Sneddon
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Eugene L Stewart
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - J Darren Stuart
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Dean N Thomas
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Stephen A Thomson
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Paris Ward
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Joseph W Wilson
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Tiahshun Xu
- GlaxoSmithKline, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA
| | - Mark A Youngman
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| |
Collapse
|
7
|
Bappy SS, Sultana S, Adhikari J, Mahmud S, Khan MA, Kibria KMK, Rahman MM, Shibly AZ. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach. J Biomol Struct Dyn 2020; 39:1139-1154. [PMID: 32037968 DOI: 10.1080/07391102.2020.1726815] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) instigating Chikungunya fever is a global infective menace resulting in high fever, weakened joint-muscle pain, and brain inflammation. Inaccessibility and unavailability of effective drugs have led us to an uncertain arena when it comes to providing proper medical treatment to the affected people. In this study, authentic encroachment has been made concerning the peptide-based epitope vaccine designing against CHIKV. A Proteome-wide search was performed to locate a conserved portion among the accessible viral outer membrane proteins which showcase a remarkable immune response using specific immunoinformatics and docking simulation tools. Primarily, the most probable immunogenic envelope glycoproteins E1 and E2 were identified from the UniProt database depending on their antigenicity scores. Subsequently, we selected two distinctive sequences "SEDVYANTQLVLQRP" and "IMLLYPDHPTLLSYR" in both E1 and E2 glycoproteins respectively. These two sequences identified as the most potent T and B cell epitope-based peptides as they interacted with 6 and 7 HLA-I and 5 HLA-II molecules with an extremely low IC50 score that was verified by molecular docking. Moreover, the sequences possess no allergenicity and are certainly located outside the transmembrane region. In addition, the sequences exhibited 88.46% and 100.00% Conservancy, covering high population coverage of 89.49% to 94.74% and 60.51% to 88.87% respectively in endemic countries. The identified peptide SEDVYANTQLVLQRP and IMLLYPDHPTLLSYR can be utilized next for the development of peptide-based epitope vaccine contrary to CHIKV, so further documentations and experimentations like Antigen testing, Antigen production, Clinical trials are needed to prove the validity of it. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Shahariar Bappy
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Juthi Adhikari
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.,Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, Dhaka, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
8
|
Khan S, Shahzadi A. Clinical pharmacokinetics of drugs in cardiopulmonary associated cachexia without hepatorenal pathology: a systematic review. Drug Metab Rev 2018; 51:1-11. [PMID: 30449195 DOI: 10.1080/03602532.2018.1508226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cachexia not only has a dramatically harmful impact on a patient's life, but also a poor response to therapeutic agents. The purpose of the present review is to provide updated information concerning the pharmacokinetic aspects of drugs used to treat cardiopulmonary cachexia in patients with no signs of hepatic or renal pathology. A systematic search of PubMed, the Cochrane Central Register of Control Trials, Science Direct, and Clinical Trials Registry (ClinicalTrials.gov), encompassing the period between 2000 and 2017, was conducted in accordance to PRISMA guidelines. Seven studies were identified. Collectively, these studies included a total of 196 individuals (19 healthy subjects and 177 diseased patients). This data review found no differences in bisoprolol and prothionamide absorption in cachectic patients with chronic heart failure and tuberculosis, but higher absorption of oflaxocin in the same set of patients was observed. The distribution of bisoprolol, prothionmaide, ceftazidime, and cefipirome was reduced in cardiopulmonary cachexia patients. Hepatic clearance of rifampin was equivalent in cachectic and non-cachectic patients that had normal hepatic function. Similarly in cardiopulmonary cachexia patients, renal clearance of ceftazidime was reduced by 19% but no significant differences in bisorpolol and prothionamide clearance were observed. In the case of cefipirome, both renal clearance and creatinine clearance were higher in cachectic patients with cystic fibrosis. From the limited evidence available, the main drug pharmacokinetic changes seen in cardiopulmonary cachexia patients were a reduction in the volume of distribution and impairment of clearance.
Collapse
Affiliation(s)
- Safeer Khan
- a Al-Taaluf National Group of Polyclinics , Alqunfdha , Makkah , Kingdom of Saudi Arabia
| | - Anum Shahzadi
- b Department of Pharmacy , COMSATS Institute of Information Technology (CIIT) , Khyber Pakhtun Khwa , Abbottabad , Pakistan
| |
Collapse
|
9
|
Mercury Contamination of Cattle in Artisanal and Small-Scale Gold Mining in Bombana, Southeast Sulawesi, Indonesia. GEOSCIENCES 2017. [DOI: 10.3390/geosciences7040133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Borella E, Poggesi I, Magni P. Prediction of the Effect of Renal Impairment on the Pharmacokinetics of New Drugs. Clin Pharmacokinet 2017; 57:505-514. [DOI: 10.1007/s40262-017-0574-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Sy SKB, Asin-Prieto E, Derendorf H, Samara E. Predicting pediatric age-matched weight and body mass index. AAPS JOURNAL 2014; 16:1372-9. [PMID: 25155824 DOI: 10.1208/s12248-014-9657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 01/30/2023]
Abstract
The empirical scaling from adult to pediatric using allometric size adjustments based on body weight continued to be the mainstream method for pediatric dose selection. Due to the flexibility of a polynomial function to conform to the data trend, an empirical function for simulating age-matched weight and body mass index by gender in the pediatric population is developed by using a polynomial function and a constant coefficient to describe the interindividual variability in weight. A polynomial of up to fifth order sufficiently described the pediatric data from the Center for Disease Control (CDC) and the World Health Organization (WHO). The coefficients of variation to describe the variability were within 17%. The percentages of the CDC simulated weights for pediatrics between 0 and 5 years that fell outside the WHO 90% and 95% confidence boundaries were well within the expected percentage values, indicating that the CDC dataset can be used to substitute for the WHO dataset for the purpose of pediatric drug development. To illustrate the utility of this empirical function, the CDC-based age-matched weights were simulated and were used in the prediction of the concentration-time profiles of tenofovir in children based on a population pharmacokinetic model whose parameters were allometrically scaled. We have shown that the resulting 95% prediction interval of tenofovir in newborn to 5 years of age was almost identical whether the weights were simulated based on WHO or CDC dataset. The approach is simple and is broadly applicable in adjusting for pediatric dosages using allometry.
Collapse
Affiliation(s)
- Sherwin K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The anthrax edema toxin (ET) of Bacillus anthracis is composed of the receptor-binding component protective antigen (PA) and of the adenylyl cyclase catalytic moiety, edema factor (EF). Uptake of ET into cells raises intracellular concentrations of the secondary messenger cyclic AMP, thereby impairing or activating host cell functions. We report here on a new consequence of ET action in vivo. We show that in mouse models of toxemia and infection, serum PA concentrations were significantly higher in the presence of enzymatically active EF. These higher concentrations were not caused by ET-induced inhibition of PA endocytosis; on the contrary, ET induced increased PA binding and uptake of the PA oligomer in vitro and in vivo through upregulation of the PA receptors TEM8 and CMG2 in both myeloid and nonmyeloid cells. ET effects on protein clearance from circulation appeared to be global and were not limited to PA. ET also impaired the clearance of ovalbumin, green fluorescent protein, and EF itself, as well as the small molecule biotin when these molecules were coinjected with the toxin. Effects on injected protein levels were not a result of general increase in protein concentrations due to fluid loss. Functional markers for liver and kidney were altered in response to ET. Concomitantly, ET caused phosphorylation and activation of the aquaporin-2 water channel present in the principal cells of the collecting ducts of the kidneys that are responsible for fluid homeostasis. Our data suggest that in vivo, ET alters circulatory protein and small molecule pharmacokinetics by an as-yet-undefined mechanism, thereby potentially allowing a prolonged circulation of anthrax virulence factors such as EF during infection.
Collapse
|
13
|
Laughon MM, Benjamin DK, Capparelli EV, Kearns GL, Berezny K, Paul IM, Wade K, Barrett J, Smith PB, Cohen-Wolkowiez M. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol 2011; 4:643-52. [PMID: 21980319 PMCID: PMC3184526 DOI: 10.1586/ecp.11.43] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Until approximately 15 years ago, sponsors rarely included children in the development of therapeutics. US and European legislation has resulted in an increase in the number of pediatric trials and specific label changes and dosing recommendations, although infants remain an understudied group. The lack of clinical trials in children is partly due to specific challenges in conducting trials in this patient population. Therapeutics in special populations, including premature infants, obese children and children receiving extracorporeal life support, are even less studied. National research networks in Europe and the USA are beginning to address some of the gaps in pediatric therapeutics using novel clinical trial designs. Recent innovations in pediatric clinical trial design, including sparse and scavenged sampling, population pharmacokinetic analyses and 'opportunistic' studies, have addressed some of the historical challenges associated with clinical trials in children.
Collapse
Affiliation(s)
- Matthew M Laughon
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel K Benjamin
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | | | | | - Ian M Paul
- Penn State College of Medicine, Hershey, PA, USA
| | - Kelly Wade
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Barrett
- Penn State College of Medicine, Hershey, PA, USA
| | - Phillip Brian Smith
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| |
Collapse
|
14
|
Thorne-Humphrey LM, Goralski KB, Slayter KL, Hatchette TF, Johnston BL, McNeil SA. Oseltamivir pharmacokinetics in morbid obesity (OPTIMO trial). J Antimicrob Chemother 2011; 66:2083-91. [PMID: 21700623 DOI: 10.1093/jac/dkr257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Detailed pharmacokinetics to guide oseltamivir (Tamiflu®) dosing in morbidly obese patients is lacking. METHODS The OPTIMO trial was a single-centre, non-randomized, open-label pharmacokinetic study of single-dose and steady-state oral oseltamivir phosphate and its carboxylate metabolite in healthy, morbidly obese [body mass index (BMI) > 40)] and healthy, non-obese (BMI < 30) subjects. RESULTS In the morbidly obese versus control subjects, respectively, the single-dose median oseltamivir oral clearance (CL/F) [840 (range 720-1640) L/h versus 580 (470-1800) L/h] was higher, the area under the curve from time zero to infinity (AUC(0-∞)) [89 (46-104) ng·h/mL versus 132 (42-160) ng·h/mL] was lower and the volume of distribution (V/F) [2320 (900-8210) L versus 1670 (700-7290) L] was unchanged. In the morbidly obese versus control subjects, respectively, the single-dose median oseltamivir carboxylate CL/F [22 (17-40) L/h versus 23 (12-33) L/h], AUC(0-∞) [3100 (1700-4100) ng·h/mL versus 3000 (2100-5900) ng·h/mL] and V/F [200 (130-370) L versus 260 (150-430) L] were similar. Similar results for oseltamivir and oseltamivir carboxylate CL/F, AUC₀₋₁₂ and V/F values were observed in the multiple-dose study. CONCLUSIONS With single and multiple dosing, the systemic exposure to oseltamivir is decreased but that of oseltamivir carboxylate is largely unchanged. Based on these pharmacokinetic data, an oseltamivir dose adjustment for body weight would not be needed in morbidly obese individuals.
Collapse
Affiliation(s)
- L M Thorne-Humphrey
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2.
| | | | | | | | | | | | | |
Collapse
|
15
|
Grau Cerrato S, Luque Pardos S, Ferrández Quirante O. [Differential pharmacokinetic characteristics of micafungin. Experience in special populations]. Enferm Infecc Microbiol Clin 2011; 29 Suppl 2:10-4. [PMID: 21420571 DOI: 10.1016/s0213-005x(11)70003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Currently, three echinocandins are available for the treatment of fungal infections. Micafungin is the latest drug to be incorporated into this group of antifungal agents. Although the mechanism of action of micafungin is similar to that of other echinocandins, this molecule has certain pharmacokinetic characteristics that distinguish it from other drugs in this group. Nowadays, there is wide information on the pharmacokinetic behavior of micafungin, mainly from patients included in clinical trials. However, there is far less knowledge of the pharmacokinetics of this echinocandin in special populations. The aim of the current review was to analyze the available information on the pharmacokinetics of micafungin in pediatric patients, the elderly, patients with renal insufficiency or liver failure, and transplant recipient.
Collapse
|
16
|
Strolin Benedetti M. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 69:45-52. [PMID: 21296217 DOI: 10.1016/j.pharma.2010.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022]
Abstract
Although the majority of oxidative metabolic reactions are mediated by the CYP superfamily of enzymes, non-CYP-mediated oxidative reactions can play an important role in the metabolism of xenobiotics. Among the major oxidative enzymes, other than CYPs, involved in the oxidative metabolism of drugs and other xenobiotics, the flavin-containing monooxygenases (FMOs), the molybdenum hydroxylases [aldehyde oxidase (AO) and xanthine oxidase (XO)] and the FAD-dependent amine oxidases [monoamine oxidases (MAOs) and polyamine oxidases (PAOs)] are discussed in this minireview. In a similar manner to CYPs, these oxidative enzymes can also produce therapeutically active metabolites and reactive/toxic metabolites, modulate the efficacy of therapeutically active drugs or contribute to detoxification. Many of them have been shown to be important in endobiotic metabolism (e.g. XO, MAOs), and, consequently, interactions between drugs and endogenous compounds might occur when they are involved in drug metabolism. In general, most non-CYP oxidative enzymes (e.g. FMOs, MAOs) appear to be noninducible or much less inducible than the CYP system. Some of these oxidative enzymes exhibit polymorphic expression, as do some CYPs (e.g. FMO3). It is possible that the contribution of non-CYP oxidative enzymes to the overall metabolism of xenobiotics is underestimated, as most investigations of drug metabolism have been performed using experimental conditions optimised for CYP activity, although in some cases the involvement of non-CYP oxidative enzymes in xenobiotic metabolism has been inferred from not sufficient experimental evidence.
Collapse
|
17
|
Current World Literature. Curr Opin Anaesthesiol 2010; 23:532-8. [DOI: 10.1097/aco.0b013e32833c5ccf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|