1
|
Kim Y, Pike KA, Gray R, Sprankle JW, Faust JA, Edmiston PL. Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1771-1787. [PMID: 36341487 DOI: 10.1039/d2em00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-resolution mass spectrometry was used to screen for emerging per- and polyfluorinated alkyl substances (PFAS) in precipitation samples collected in summer 2019 at seven sites in the United States. We previously quantified the concentration of ten PFAS in the rainwater samples using the method of isotopic dilution (Pike et al., 2021). Nine of these targeted analytes belonged to the U.S. Environmental Protection Agency Regional Screening Level list, herein referred to as EPA-monitored analytes. In this new work, we identify emerging PFAS compounds by liquid chromatography quadrupole time-of-flight mass spectrometry. Several emerging PFAS were detected across all samples, with the most prevalent compounds being C3-C8 hydrogen-substituted perfluorocarboxylic acids (H-PFCAs) and fluorotelomer carboxylic acids (FTCAs). Concentrations of emerging PFAS were in the 10-1000 ng L-1 range (approximately 1-2 orders of magnitude greater than EPA-monitored PFAS) at all sites except Wooster, OH, where concentrations were even higher, with a maximum estimated ΣPFAS of 16 400 ng L-1. The elevated levels of emerging PFAS in the Wooster samples were predominantly even and odd chain-length H-PFCAs and FTCAs comprised of complex mixtures of branched isomers. This unique composition did not match any known manufactured PFAS formulation reported to date, but it could represent thermally transformed by-products emitted by a local point source. Overall, the results indicate that PFAS outside of the standard analyte lists make up a significant and previously unappreciated fraction of contaminants in rainwater collected within the central U.S.-and potentially world-wide-especially in proximity to localized point sources.
Collapse
Affiliation(s)
- Yubin Kim
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| | - Kyndal A Pike
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
- Department of Mathematical & Computational Sciences, College of Wooster, Wooster, OH, USA
| | - Rebekah Gray
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| | - Jameson W Sprankle
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
- Department of Earth Sciences, College of Wooster, Wooster, OH, USA
| | | | - Paul L Edmiston
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| |
Collapse
|
2
|
Titaley IA, Khattak J, Dong J, Olivares CI, DiGuiseppi B, Lutes CC, Field JA. Neutral Per- and Polyfluoroalkyl Substances, Butyl Carbitol, and Organic Corrosion Inhibitors in Aqueous Film-Forming Foams: Implications for Vapor Intrusion and the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10785-10797. [PMID: 35852516 DOI: 10.1021/acs.est.2c02349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), butyl carbitol, and corrosion inhibitors are components of aqueous film-forming foams (AFFFs). Volatile (neutral) fluorotelomerization (FT)- and electrochemical fluorination (ECF)-based PFAS, butyl carbitol, and organic corrosion inhibitors were quantified in 39 military specification (MilSpec), non-MilSpec, and alcohol resistant-AFFF concentrates (undiluted) from 1974 to 2010. Fluorotelomer alcohols were found only in FT-based AFFFs and N-methyl- and N-ethyl-perfluoroalkyl sulfonamides, and sulfonamido ethanols were found only in ECF-based AFFFs. Neutral PFAS and benzotriazole, 4-methylbenzotriazole, and 5-methybenzotriazole occurred at mg/L levels in the AFFFs, while butyl carbitol occurred at g/L levels. Neutral PFAS concentrations in indoor air due to vapor intrusion of a nearby undiluted AFFF release are estimated to be anywhere from 2 to >10 orders of magnitude higher than documented background indoor air concentrations. Estimated butyl carbitol and organic corrosion inhibitor concentrations were lower than and comparable to indoor concentrations recently measured, respectively. The wide range of neutral PFAS concentrations and Henry's law constants indicate that field, soil-gas measurements are needed to validate the estimations. Co-discharged butyl carbitol likely contributes to oxygen depletion in AFFF-impacted aquifers and may hinder the natural PFAS aerobic biotransformation. Organic corrosion inhibitors in AFFFs indicate that these are another source of corrosion inhibitors in the environment.
Collapse
Affiliation(s)
- Ivan A Titaley
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Jialin Dong
- Department of Civil and Environmental Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Christopher I Olivares
- Department of Civil and Environmental Engineering, University of California Irvine, Irvine, California 92697, United States
| | | | | | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Shafique U, Schulze S, Slawik C, Böhme A, Paschke A, Schüürmann G. Perfluoroalkyl acids in aqueous samples from Germany and Kenya. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11031-11043. [PMID: 27335016 DOI: 10.1007/s11356-016-7076-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 05/26/2023]
Abstract
Continuous monitoring of chemicals in the environment is important to control their fate and to protect human health, flora, and fauna. Perfluoroalkyl acids (PFAAs) have been detected frequently in different environmental compartments during the last 15 years and have drawn much attention because of their environmental persistence, omnipresence, and bioaccumulation potential. Water is an important source of their transport. In the present study, distributions of PFAAs in river water, wastewater treatment plant (WWTP) effluent, and tap water from eastern part of Germany and western part of Kenya were investigated. Eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs) were analyzed using liquid chromatography/tandem mass spectrometry. Sum of mean concentrations of eight PFAAs detected in drinking tap water from Leipzig was 11.5 ng L-1, dominated by perfluorooctanoic acid (PFOA, 6.2 ng L-1). Sums of mean riverine concentrations of PFAAs detected in Pleiße/White Elster, Saale, and Elbe (Germany) were 24.8, 54.3, and 26.8 ng L-1, respectively. Annual flux of PFAAs from River Saale was estimated to be 164 ± 23 kg a-1. The effluent of WWTP in Halle was found to contain four times higher levels of PFAAs than river water and was dominated by perfluorobutane sulfonate (PFBS) with 32 times higher concentration than the riverine level. It advocates that WWTPs are the point source of contaminating water bodies with PFAAs, and short-chain PFAAs are substituting long-chain homologues. Sums of mean riverine concentrations of PFAAs in Sosiani (Kenya) in samples from sparsely populated and densely populated areas were 58.8 and 109.4 ng L-1, respectively, indicating that population directly affected the emissions of PFAAs to surface waters. The discussion includes thorough review and comparison of recently published literature reporting occurrence of PFAAs in aqueous matrices. Graphical abstract Perfluoroalkyl acids in aqueous matrices.
Collapse
Affiliation(s)
- Umer Shafique
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany.
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger-Straße 29, 09596, Freiberg, Germany.
| | - Stefanie Schulze
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany
- Institute for Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Saale, Germany
| | - Christian Slawik
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger-Straße 29, 09596, Freiberg, Germany
| | - Alexander Böhme
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany
| | - Albrecht Paschke
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoser-Straße 15, 04318, Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger-Straße 29, 09596, Freiberg, Germany
| |
Collapse
|
4
|
Rayne S, Forest K. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1018-1023. [PMID: 27389973 DOI: 10.1080/10934529.2016.1198191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.
Collapse
Affiliation(s)
- Sierra Rayne
- a Chemologica Research , Moose Jaw , Saskatchewan , Canada
| | - Kaya Forest
- b Department of Environmental Engineering Technology , Saskatchewan Polytechnic , Moose Jaw , Saskatchewan , Canada
| |
Collapse
|
5
|
Effect of PFOS on glucocorticoid-induced changes in human decidual stromal cells in the first trimester of pregnancy. Reprod Toxicol 2016; 63:142-50. [DOI: 10.1016/j.reprotox.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
|
6
|
Rayne S, Forest K. A high-level theoretical study into the atmospheric phase hydration, bond dissociation enthalpies, and acidity of aldehydes. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sierra Rayne
- Chemologica Research; Moose Jaw Saskatchewan Canada
| | - Kaya Forest
- Department of Environmental Engineering Technology; Saskatchewan Polytechnic; Moose Jaw Saskatchewan Canada
| |
Collapse
|
7
|
Rayne S, Forest K. pH dependent partitioning behaviour of food and beverage aroma compounds between air-aqueous and organic-aqueous matrices. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sierra Rayne
- Chemologica Research; Moose Jaw Saskatchewan Canada
| | - Kaya Forest
- Department of Environmental Engineering Technology; Saskatchewan Polytechnic; Moose Jaw Saskatchewan Canada
| |
Collapse
|
8
|
Yamazaki E, Falandysz J, Taniyasu S, Hui G, Jurkiewicz G, Yamashita N, Yang YL, Lam PKS. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:63-69. [PMID: 26540117 DOI: 10.1080/10934529.2015.1079113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain compounds and formation of shorter chain compounds, which are more resistant to photochemical degradation.
Collapse
Affiliation(s)
- Eriko Yamazaki
- a Department of Environmental Science , National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
| | - Jerzy Falandysz
- b Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk University , Gdańsk , Poland
| | - Sachi Taniyasu
- a Department of Environmental Science , National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
| | - Ge Hui
- a Department of Environmental Science , National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
- c Institute of Science and Engineering, Kanazawa University , Kanazawa, Ishikawa , Japan
| | - Gabriela Jurkiewicz
- b Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk University , Gdańsk , Poland
| | - Nobuyoshi Yamashita
- a Department of Environmental Science , National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan
| | - Yong-Liang Yang
- d National Research Center for Geoanalysis (NRCGA) , Beijing , China
| | - Paul K S Lam
- e Department of Biology and Chemistry , State Key Laboratory in Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong SAR , China
| |
Collapse
|
9
|
Rayne S, Forest K. Congener-specific organic carbon-normalized soil and sediment-water partitioning coefficients for the C1 through C8 perfluoroalkyl carboxylic and sulfonic acids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2009; 44:1374-1387. [PMID: 20183495 DOI: 10.1080/10934520903217229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Organic carbon-normalized soil and sediment-water partitioning coefficients (K(oc)) were estimated for all C(1) through C(8) perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acid congeners. The limited experimental K(oc) data set for the straight chain C(7) through C(10) PFCAs and C(8) and C(10) PFSAs was correlated to SPARC and ALOGPS computationally estimated octanol-water partitioning/distribution constants and used to predict K(oc) values for both branched and linear C(1) through C(8) isomers. Branched and linear congeners in this homologue range are generally expected to have K(oc) values > 1, leading to their accumulation in organic matter on sediments and soils, retardation during ground and pore water flow, and the preferential association with dissolved organic matter in aquatic systems. Both increasing perfluoroalkyl chain length and linearity increase K(oc) values with substantial intra- and inter-homologue variation and interhomologue mixing. Variability in K(oc) values among the PFCA and PFSA congeners will likely lead to an enrichment of more linear and longer-chain isomers in organic matter fractions, resulting in aqueous phases fractionated towards shorter-chain branched congeners. The expected magnitude of fractionation will require inclusion in source apportionment models and risk assessments. A comparison of representative established quantitative structure property relationships for estimating K(oc) values from octanol-water partitioning constants suggests that these equilibrium partitioning frameworks may be applicable towards modeling PFCA and PFSA environmental fate processes.
Collapse
Affiliation(s)
- Sierra Rayne
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|