1
|
Xu S, Abeysekara S, Dudas S, Czub S, Staskevicius A, Mitchell G, Amoako KK, McAllister TA. Biodegradation of bovine spongiform encephalopathy prions in compost. Sci Rep 2022; 12:22233. [PMID: 36564427 PMCID: PMC9789035 DOI: 10.1038/s41598-022-26201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
To reduce the transmission risk of bovine spongiform encephalopathy prions (PrPBSE), specified risk materials (SRM) that can harbour PrPBSE are prevented from entering the feed and food chains. As composting is one approach to disposing of SRM, we investigated the inactivation of PrPBSE in lab-scale composters over 28 days and in bin composters over 106-120 days. Lab-scale composting was conducted using 45 kg of feedlot manure with and without chicken feathers. Based on protein misfolding cyclic amplification (PMCA), after 28 days of composting, PrPBSE seeding activity was reduced by 3-4 log10 with feathers and 3 log10 without. Bin composters were constructed using ~ 2200 kg feedlot manure and repeated in 2017 and 2018. PMCA results showed that seeding activity of PrPBSE was reduced by 1-2 log10 in the centre, but only by 1 log10 in the bottom of bin composters. Subsequent assessment by transgenic (Tgbov XV) mouse bioassay confirmed a similar reduction in PrPBSE infectivity. Enrichment for proteolytic microorganisms through the addition of feathers to compost could enhance PrPBSE degradation. In addition to temperature, other factors including varying concentrations of PrPBSE and the nature of proteolytic microbial populations may be responsible for differential degradation of PrPBSE during composting.
Collapse
Affiliation(s)
- Shanwei Xu
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| | - Sujeema Abeysekara
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Sandor Dudas
- Canadian and WOAH Reference Laboratories for BSE, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Stefanie Czub
- Canadian and WOAH Reference Laboratories for BSE, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Antanas Staskevicius
- Canadian and WOAH Reference Laboratories for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Gordon Mitchell
- Canadian and WOAH Reference Laboratories for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Kingsley K Amoako
- National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
2
|
Sassi HP, Ikner LA, Abd-Elmaksoud S, Gerba CP, Pepper IL. Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:15-19. [PMID: 28961437 DOI: 10.1016/j.scitotenv.2017.09.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 04/14/2023]
Abstract
Micro-scale technology was used to obtain survival data for three animal viruses and two bacteriophages during anaerobic digestion. The data for adenoviruses, MS2 and Φ6 provide the first published reports for survival of these viruses during mesophilic anaerobic digestion. Data were also obtained for thermophilic digestion, which showed greater inactivation of viruses at the higher temperature. Data on the survival of Φ6 are of particular interest since it is a lipid-based virus which has been suggested as a surrogate for the Ebola virus. In contrast, MS2 was found to be an inappropriate surrogate for Ebola.
Collapse
Affiliation(s)
- Hannah P Sassi
- Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Luisa A Ikner
- Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre (NRC), Cairo, Egypt
| | - Charles P Gerba
- Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Ian L Pepper
- Water and Energy Sustainable Technology Center, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA.
| |
Collapse
|
3
|
Marín-Moreno A, Espinosa JC, Fernández-Borges N, Píquer J, Girones R, Andreoletti O, Torres JM. An assessment of the long-term persistence of prion infectivity in aquatic environments. ENVIRONMENTAL RESEARCH 2016; 151:587-594. [PMID: 27591838 DOI: 10.1016/j.envres.2016.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrPC transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrPRes persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Juan-Carlos Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Juan Píquer
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain
| | - Rosina Girones
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan-María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar S/n, Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|
4
|
Gilroyed BH, Braithwaite SL, Price LM, Reuter T, Czub S, Graham C, Balachandran A, McAllister TA, Belosevic M, Neumann NF. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate. J Microbiol Methods 2015; 118:1-6. [PMID: 26272376 DOI: 10.1016/j.mimet.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays.
Collapse
Affiliation(s)
- Brandon H Gilroyed
- School of Environmental Sciences, University of Guelph, Ridgetown N0P 2C0, Canada.
| | | | - Luke M Price
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada
| | - Tim Reuter
- Alberta Agriculture and Rural Development, Lethbridge T1J 4V6, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge T1H 6P7, Canada
| | | | | | | | - Miodrag Belosevic
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada; Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada; Alberta Provincial Laboratory for Public Health, Edmonton T6G 2J2, Canada
| |
Collapse
|
5
|
Adkin A, Jones D, Eckford R, Edwards-Jones G, Williams A. A quantitative risk assessment for the safety of carcase storage systems for scrapie infected farms. J Appl Microbiol 2014; 117:940-8. [DOI: 10.1111/jam.12596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/13/2014] [Accepted: 07/04/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Adkin
- Department of Epidemiological Sciences, Animal Health and Veterinary Laboratories Agency; Weybridge UK
| | - D.L. Jones
- School of the Environment, Natural Resources and Geography; Bangor University; Bangor Gwynedd UK
| | - R.L. Eckford
- Veterinary Advisor, Office of the Chief Veterinary Officer; Welsh Government; Wales UK
| | - G. Edwards-Jones
- School of the Environment, Natural Resources and Geography; Bangor University; Bangor Gwynedd UK
| | - A.P. Williams
- School of the Environment, Natural Resources and Geography; Bangor University; Bangor Gwynedd UK
| |
Collapse
|
6
|
Xu S, Reuter T, Gilroyed BH, Mitchell GB, Price LM, Dudas S, Braithwaite SL, Graham C, Czub S, Leonard JJ, Balachandran A, Neumann NF, Belosevic M, McAllister TA. Biodegradation of prions in compost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6909-6918. [PMID: 24819143 DOI: 10.1021/es500916v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively. Further analysis using protein misfolding cyclic amplification (PMCA) confirmed a reduction of 2 log10 in PrP(263K) and 3 log10 in PrP(CWD). Enrichment for proteolytic microorganisms through the addition of feather keratin to compost enhanced degradation of PrP(263K) and PrP(CWD). For field-scale composting, stainless steel beads coated with PrP(263K) were exposed to compost conditions and removed periodically for bioassays in Syrian hamsters. After 230 days of composting, only one in five hamsters succumbed to TSE disease, suggesting at least a 4.8 log10 reduction in PrP(263K) infectivity. Our findings show that composting reduces PrP(TSE), resulting in one 50% infectious dose (ID50) remaining in every 5600 kg of final compost for land application. With these considerations, composting may be a viable method for SRM disposal.
Collapse
Affiliation(s)
- Shanwei Xu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre , Lethbridge, Alberta T1J 4B1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Maluquer de Motes C, Espinosa JC, Esteban A, Calvo M, Girones R, Torres JM. Persistence of the bovine spongiform encephalopathy infectious agent in sewage. ENVIRONMENTAL RESEARCH 2012; 117:1-7. [PMID: 22776326 DOI: 10.1016/j.envres.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/28/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Horizontal transmission of prion diseases through the environment represents a considerable concern. Prions are extremely resistant to inactivation and are thought to enter the environment after burial of animal mortalities or through biosolids from wastewater treatment plants. In addition, deposition of prions in the environment through biological fluids and/or faeces has been proved in the last years. Little is known about the behaviour of prion infectivity in the environment. In this study, the persistence of BSE infectious agent in sewage has been assessed by both PrP(Res) immunoblotting and mouse bioassay in a long-term incubation study. Results indicated that no PrP(Res) was detected after 150 day of incubation and consistent with this, a statistical regression model estimated 2-logs decay in 151 day. In contrast, no reduction in infectivity was observed during this period. Similarly, BSE infectivity remained unaltered after incubation in PBS for 265 day, whereas PrP(Res) levels dropped progressively over the length of the study. These results indicate that in sewage and PBS, prion infectivity persists longer and with different dynamics than its commonly used marker PrP(Res). Thus, mathematical models computed on the basis of PrP(Res) detection were unable to predict inactivation of prion infectivity. It is also reasonable to assume that conventional wastewater treatments with low retention times could have a very limited impact on prion infectivity. This data is essential for the development of accurate risk assessment analysis for BSE and other prion diseases in the environment.
Collapse
|