1
|
Chen Y, Fu Y, Li P, Xi H, Zhao W, Wang D, Mao J, Zhang S, Sun S, Xie J. Characterization of Traditional Chinese Sesame Oil by Using Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry, Electronic Nose, Sensory Evaluation, and RapidOxy. Foods 2022; 11:foods11223555. [PMID: 36429147 PMCID: PMC9689288 DOI: 10.3390/foods11223555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Xiao Mo Xiang You (XMXY) is a traditional Chinese sesame oil variety that is obtained through a hot water flotation process. This unique process gives the oil a unique aroma, health benefits, and excellent product stability. Although XMXY is always the most expensive among all the sesame oil varieties, it is usually used as a flavoring in many traditional Chinese daily food products and is increasingly popular. In order to reveal the characteristics of the oil, the volatile components, sensory evaluation, and oxidation stability of five XMXY samples were, respectively, analyzed by using headspace solid-phase microextraction/gas chromatography−mass spectrometry, an electronic nose, sensory evaluation, and RapidOxy. Comparisons and multidimensional statistical analysis were also carried out to distinguish XMXY from roasted sesame oil (RSO) and cold-pressed sesame oil (CSO) samples. In total, 69 volatiles were identified from XMXY, RSO, and CSO samples. Some compounds possessed high odor activity value (OAV > 1) in XMXY, including heterocyclic compounds, phenols, and sulfur-containing compounds. Additionally, they were also the main volatile components that distinguish XMXY from RSO and CSO. Roasted and nutty aromas were the dominant aroma attributes of XMXY. XMXY had better flavor intensity and oxidation stability than the other two sesame oil samples. These results are very valuable for the quality control and product identification of traditional Chinese sesame oil.
Collapse
Affiliation(s)
- Yan Chen
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yingjie Fu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Peng Li
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Hui Xi
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Wuduo Zhao
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Dingzhong Wang
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Jian Mao
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Shusheng Zhang
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Shihao Sun
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67672531
| | - Jianping Xie
- Flavor Research Center, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| |
Collapse
|
2
|
Use of oil mixture emulsion hydrogels as partial animal fat replacers in dry-fermented foal sausages. Food Res Int 2022; 161:111881. [DOI: 10.1016/j.foodres.2022.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
3
|
Wang Y, Hua L, Fu Q, Wu C, Zhang C, Li H, Xu G, Ni Q, Zhang Y. Rapid Identification of Adulteration in Extra Virgin Olive Oil via Dynamic Headspace Sampling and High-Pressure Photoionization Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6775-6784. [PMID: 35623031 DOI: 10.1021/acs.jafc.2c01361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) combined with dynamic headspace sampling was developed for rapid identification of adulteration in extra virgin olive oil (EVOO). The volatile organic compound (VOC) fingerprints of EVOO, refined rapeseed oil (r-RO), peanut oil (PO), corn oil (CO), fragrant rapeseed oil (f-RO), and sunflower oil (SO) were obtained in just 1.5 min, which enabled satisfactory classification of different edible oils. 1,4-Bis(methylene)cyclohexane and dimethyl disulfide were unique VOCs in r-RO and f-RO, respectively, while 2,5-dimethylpyrazine and 2-methylpyrazine were distinctive VOCs in PO. Percentages as low as 3% r-RO, 1% PO, and 1% f-RO in r-RO-EVOO, PO-EVOO, and f-RO-EVOO mixtures, respectively, were successfully identified based on the characteristic VOCs. Linear regression equations of these VOCs were established and utilized for predicting the adulteration proportions. The good agreements between the actual adulteration proportions and the predicted ones demonstrated that HPPI-TOFMS was reliable for the quantification of EVOO adulteration.
Collapse
Affiliation(s)
- Yan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian, Liaoning 116023, People's Republic of China
| | - Qianwen Fu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Chenxin Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian, Liaoning 116023, People's Republic of China
| | - Chong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian, Liaoning 116023, People's Republic of China
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Dalian Key Laboratory for Online Analytical Instrumentation, Dalian, Liaoning 116023, People's Republic of China
| | - Guangzhi Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Qinxue Ni
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Youzuo Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Food and Health, Zhejiang A & F University, Linan, Hangzhou 311300, China
- Zhejiang Jiaozhi Technology Co., Ltd., Linan, Hangzhou 311300, China
| |
Collapse
|
4
|
Liu R, Chen H, Wang S, Wei L, Yu Y, Lan W, Yang J, Guo L, Fu H. Maillard reaction products and guaiacol as production process and raw material markers for the authentication of sesame oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:250-258. [PMID: 34091922 DOI: 10.1002/jsfa.11353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sesame oil has an excellent flavor and is widely appreciated. It has a higher price than other vegetable oils because of the high price of its raw materials, and different processing techniques also result in products of different quality levels, which can command different prices. In the market, there is a persistent problem of adulteration of sesame oil, driven by economic interests. The screening of volatile markers used to distinguish the authenticity of sesame oil raw materials and production processes is therefore very important. RESULTS In this work, six markers related to the production processes and raw materials of sesame oil were screened by gas chromatography-tandem mass spectrometry (GC-MS/MS) combined with chemometric analysis. They were 3-methyl-2-butanone, 2-ethyl-5-methyl-pyrazine, guaiacol, 2,6-dimethyl-pyrazine, 5-methyl furfural, and ethyl-pyrazine. The concentration of these markers in sesame oil is between 10 and1000 times that found in other vegetable oils. However, only 3-methyl-2-butanone and 2-ethyl-5-methyl-pyrazine differed significantly as the result of the use of different production processes. Except for guaiacol, which was mainly derived from raw materials, the other five compounds mentioned above all result from the Maillard reaction during thermal processing. The six compounds mentioned above are sufficient to distinguish fraud involving sesame oil raw materials and production processes, and can identify accurately adulteration levels of 30% concentration. CONCLUSION In this study, the classification markers can identify the adulteration of sesame oil accurately. These six compounds are therefore important for the authenticity of sesame oil and provide a theoretical basis for the rapid and accurate identification of the authenticity of sesame oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongjie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
5
|
Detection and quantification of palmolein and palm kernel oil added as adulterant in coconut oil based on triacylglycerol profile. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4420-4428. [PMID: 34538925 DOI: 10.1007/s13197-020-04927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/12/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Economically motivated adulteration of expensive coconut oil with low cost oil, like palm kernel oil and palmolein is difficult to detect and quantify by available methods primarily due to their overlapping physicochemical properties with coconut oil. In the present work, a HPLC method has been developed to detect and quantify the degree of adulteration of coconut oil with palmolein and palm kernel oil based on triglyceride structure. The normalized area percentage of trilaurin (C36) among the three major TAG molecular species dilaurin-monocaprin/myristin-caprylin-laurin (C34), trilaurin (C36) and dilaurin-monomyristin (C38) of coconut oil was chosen as detection index for quantifying degree of adulteration of coconut oil with palm kernel oil, while the area ratio of dipalmitoyl-monoolein: trilaurin was chosen as detection index for quantifying adulteration of coconut oil with palmolein. The RP-HPLC based method developed in the present work is effective with a 2-4% minimum detection limit of adulterant oils and 78-98% detection accuracy depending on the degree of adulteration and types of oil.
Collapse
|
6
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Mansur AR, Seo DH, Song EJ, Song NE, Hwang SH, Yoo M, Nam TG. Identifying potential spoilage markers in beef stored in chilled air or vacuum packaging by HS-SPME-GC-TOF/MS coupled with multivariate analysis. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|