1
|
Silva PM, Gonçalves C, Pastrana LM, Coimbra MA, Vicente AA, Cerqueira MA. Recent advances in oral delivery systems of resveratrol: foreseeing their use in functional foods. Food Funct 2023; 14:10286-10313. [PMID: 37947452 DOI: 10.1039/d3fo03065b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.
Collapse
Affiliation(s)
- Pedro M Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Antonio A Vicente
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
- Associate Laboratory (LABBELS), Braga/Guimarães, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
2
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
3
|
Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhenfeng Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| |
Collapse
|