1
|
Gu M, Luo H, Zhang Z, Ye F, Zhao G. Efficient preparation of starch-lipid complexes: A review. Int J Biol Macromol 2025; 302:140544. [PMID: 39894109 DOI: 10.1016/j.ijbiomac.2025.140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Given their diverse techno-functional traits and huge potential in shaping better food textural, nutritional, and flavor attributes, starch-lipid complexes have attracted much effort in the last two decades. The essential aspects concerning the synthesis of starch-lipid complexes were systematically reviewed to establish high-efficiency methods. First, a new 5-level classification system was proposed for the methods applied in literature, which finally assigned them into seventeen groups. Second, the complexation was examined from the perspectvies of substrate traits and operating parameters. As per starch, amylose content, the degree of polymerization, botanical source, crystal form, and short-range order were explored. As per lipid, concentration, alkyl chain length, the degree of unsaturation, the configuration of the double bond, the form of carboxyl group, and the degree and type of esterification were considered. The operating parameters included the compounding temperature, compounding time, pH conditions, starch moisture content, and the addition mode of lipids involved in the preparation of starch-lipid complexes. Third, the strategies for better complexation by starch modification (enzymatic, physical, and chemical), process reinforcement (ultrasound, pullulanase, NaCl, lecithin, and high pressure), and post-synthetic processing were presented. Finally, the challenges and opportunities were proposed. This review provides insights for the comprehensive understanding to the efficient preparation of starch-lipid complexes.
Collapse
Affiliation(s)
- Miaomiao Gu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Haoran Luo
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; College of Life Science, Sichuan Normal University, Chengdu 610101, People's Republic of China.
| |
Collapse
|
2
|
Nurdin SU, Nurdjanah S, Triyandi R, Nurhadi B. Antioxidant Activity, Glycemic Response, and Functional Properties of Rice Cooked with Red Palm Oil. J Nutr Metab 2024; 2024:3483292. [PMID: 38725902 PMCID: PMC11081750 DOI: 10.1155/2024/3483292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/02/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
High rice consumption levels accompanied by a lifestyle lacking in physical activity leads to obesity and diabetes due to the rice consumed generally has high digestibility and high glycemic index. Red palm oil (RPO) is a vegetable oil suggested to have the potential to reduce starch digestibility and increase the bioactive compounds of rice. This research aimed to find out the best cooking method to produce rice with a sensory quality similar to regular rice and to study the effect of the best cooking method on the glycemic response and physicochemical properties of rice. The results showed that RPO addition increased the antioxidant activities and total carotenoid levels of rice. The addition of RPO after cooking has better antioxidant activity and total carotenoid than before cooking. Adding 2% RPO before or after cooking produced rice with similar or better sensory quality than regular rice. Rice cooked with 2% RPO added before cooking had a lower glycemic response than regular rice, which was suggested to be caused by the increasing formation of the amylose lipid complex and the triglycerides that protected the starch from amylase enzyme. The formation of the amylose lipid complex and triglyceride layers protecting rice starch was confirmed by the new peaks of the FTIR spectra, the appearance of oil-coated starch morphology, and the changes in the proportion of C and O atoms. In conclusion, the addition of 2% RPO before the cooking process can be considered as a cooking method to produce rice for diabetic patients.
Collapse
Affiliation(s)
- Samsu U. Nurdin
- Department of Agriculture Product Technology, Agriculture Faculty, Lampung University, Bandar Lampung 6235145, Indonesia
| | - Siti Nurdjanah
- Department of Agriculture Product Technology, Agriculture Faculty, Lampung University, Bandar Lampung 6235145, Indonesia
| | - Ramadhan Triyandi
- Department of Pharmacy, Faculty of Medicine, Lampung University, Bandar Lampung 6235145, Indonesia
| | - Bambang Nurhadi
- Department of Food Technology, Agriculture Technology Faculty, Padjadjaran University, Bandung 62 45363, Indonesia
| |
Collapse
|
3
|
Cahyana Y, Annisa NDN, Khoerunnisa TK, Sulastri S, Marta H, Rialita T, Yuliana T, Aït-Kaddour A, Şumnu G. Banana starch modified by heat moisture treatment and annealing: Study on digestion kinetics and enzyme affinity. Int J Biol Macromol 2024; 258:128771. [PMID: 38101675 DOI: 10.1016/j.ijbiomac.2023.128771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Starch modification by annealing (ANN) and heat-moisture treatment (HMT) results in a lower crystallinity compared to native but the change of B crystalline type to A type is only observed in HMT starch. All starches possess two different digestion rate constants i.e. k1 (at rapid phase) and k2 (at slow phase) which may be linked to the preserved intact starch granule following thermal treatment. HMT starch contains higher content of slowly digestible starch (C2∞) compared to the C2∞ of the other starches. The lower enzyme binding to HMT starch (Kd value increases from 0.12 mg/mL in native starch to 0.83 mg/mL) may be linked to the increase in the degree of ordered structure of the granule surface (observed from the absorption band ratio of 1000 cm-1/1022 cm-1). The lower affinity may lead to a lower k1 value. This holds true for ANN and native starch which displays similar k1, Kd value and degree of ordered to disordered structure. Lower k2 in HMT starch compared to the corresponding k2 in the other starches may be linked to the slower enzyme diffusion into the core of starch granule due to the tightly packed structure of A crystalline type in HMT starch.
Collapse
Affiliation(s)
- Yana Cahyana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia.
| | - Nadia Dewi Nur Annisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tiara Kurnia Khoerunnisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Sri Sulastri
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Herlina Marta
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tita Rialita
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tri Yuliana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Abderrahmane Aït-Kaddour
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia; VetAgro Sup, INRAE (National Institute for Agriculture, Food, and Environment), Université Clermont-Auvergne, 63370 Lempdes, France
| | - Gülüm Şumnu
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Cahyana Y, Verrell C, Kriswanda D, Aulia GA, Yusra NA, Marta H, Sukri N, Esirgapovich SJ, Abduvakhitovna SS. Properties Comparison of Oxidized and Heat Moisture Treated (HMT) Starch-Based Biodegradable Films. Polymers (Basel) 2023; 15:polym15092046. [PMID: 37177193 PMCID: PMC10180903 DOI: 10.3390/polym15092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Starch-based biodegradable films have been studied for a long time. To improve starch properties and to increase film characteristics, starch is commonly modified. Amongst different types of starch modifications, oxidation and heat moisture treatment are interesting to explore. Unfortunately, review on these modifications for film application is rarely found, although these starch modifications provide interesting results regarding the starch and film properties. This paper aims to discuss the progress of research on oxidized and heat moisture-treated-starch for edible film application. In general, both HMT and oxidation modification on starch lead to an increase in film's tensile strength and Young's modulus, suggesting an improvement in film mechanical properties. The elongation, however, tends to decrease in oxidized starch-based film, hence more brittle film. Meanwhile, HMT tends to result in a more ductile film. The drawback of HMT film is its lower transparency, while the opposite is observed in oxidized films. The observation on WVP (water vapor permeability) of HMT starch-based film shows that the trend of WVP is not consistent. Similarly, an inconsistent trend of WVP is also found in oxidized starch films. This suggests that the WVP parameter is very sensitive to intrinsic and extrinsic factors. Starch source and its concentration in film, film thickness, RH (relative humidity) of film storage, oxidation method and its severity, plasticizer type and its concentration in film, and crystallinity value may partly play roles in determining film properties.
Collapse
Affiliation(s)
- Yana Cahyana
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Christoper Verrell
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dodo Kriswanda
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Ghina Almira Aulia
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Namira Azkia Yusra
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Herlina Marta
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Nandi Sukri
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | | | | |
Collapse
|
5
|
Oskaybaş-Emlek B, Özbey A, Aydemir LY, Kahraman K. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. Int J Biol Macromol 2022; 207:978-989. [PMID: 35378155 DOI: 10.1016/j.ijbiomac.2022.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
In this study, the effect of reaction parameters on complex index (CI%) value of complexes formed between buckwheat starch (BS) and myristic acid (MA) was investigated. The temperature (60-90 °C) and MA to BS ratio (0.1-0.8 mmoL/g) were determined as the most effective parameters and their effect on CI% was evaluated using response surface methodology. The MA to BS ratio, temperature, and interaction between them had an influence on CI%. The CI% of BS-MA complexes increased with increasing MA ratio until a certain level of MA. Principal component analysis (PCA) was used for correlation analysis between parameters. Swelling power and paste clarity of BS decreased with complex formation while syneresis increased. Peak and final viscosity values of the BS-MA complexes were significantly lower than those of BS. FT-IR revealed the complex formation led to change in starch structure. The XRD confirmed the BS-MA complex formation but the BS-MA produced using 0.1 mmoL/g at 60 °C was not detected by XRD due to having low crystallinity, and expectedly, the lowest relative crystallinity value was achieved with this sample among complex samples. All results showed that the buckwheat might be an alternative starch source for starch-lipid complex formation.
Collapse
Affiliation(s)
| | - Ayşe Özbey
- Dept. of Food Eng., Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Levent Yurdaer Aydemir
- Dept. of Food Eng., Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Kevser Kahraman
- Dept. of Nanotechnology Eng., Abdullah Gül University, Kayseri, Turkey.
| |
Collapse
|
6
|
Królikowska K, Pietrzyk S, Łabanowska M, Kurdziel M, Pająk P. The influence of acid hydrolysis on physicochemical properties of starch-oleic acid mixtures and generation of radicals. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Cahyana Y, Nugraha T, Aprilira N, Ayuningtias K, Soeherman G, Marta H, Tensiska T. Interplay Role of Heat-Moisture Treatment and Lipid from Egg yolk and Margarine on Functional and Pasting Properties of Banana Flour. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Marta H, Cahyana Y, Djali M. Pectin interaction with thermally modified starch affects physicochemical properties and digestibility of starch as revealed by logarithm of slop plot. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1858969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Herlina Marta
- Laboratory of Food Processing Technology, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yana Cahyana
- Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Mohamad Djali
- Laboratory of Food Processing Technology, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|