1
|
Senevirathna N, Hassanpour M, O’Hara I, Karim A. Sustainable Extraction of Fresh Banana Inflorescence by ASE: Optimization and Characterization of Anthocyanin Rich Extracts by LC-UV-MS/MS. Foods 2025; 14:1299. [PMID: 40282700 PMCID: PMC12025860 DOI: 10.3390/foods14081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 04/29/2025] Open
Abstract
Sustainable and environmentally friendly extraction methods for natural bioactive compounds are gaining significant attention in the food, beverage, and nutraceutical industries. Among these bioactive compounds, anthocyanins, which are potent antioxidants, have garnered particular interest due to their health-promoting properties. Banana inflorescence, an underutilized agricultural by-product, is a rich source of bioactive compounds. However, the extraction of bioactive compounds is often energy-intensive, which raises concerns about environmental sustainability. Accelerated solvent extraction (ASE) has emerged as an efficient and less energy-consuming method for isolating these compounds. This study investigates the optimization of ASE for the extraction of phenolic compounds, including anthocyanins, from fresh banana inflorescence. The effect of extraction parameters, including temperature (60, 80, and 100 °C), solvent type (water, ethanol, methanol), and solvent composition (50% ethanol + 50% water, 75% ethanol + 25% water, 100% ethanol, 50% methanol + 50% water, 75% methanol + 25% water, 100% methanol, water), on the extraction efficiency was evaluated. The results showed that the most effective extraction conditions were 75% methanol + 25% water at 100 °C, yielding the highest concentrations of total phenolics (1239.58 ± 20.83 mg/100 g), antioxidant activity (2.21 ± 0.03 mg/mL), and anthocyanins (22.82 mg ± 1.91/100 g). LC-UV-MS analysis revealed three primary anthocyanidins: cyanidin-3-rutinoside, delphinidin-3-rutinoside, and petunidin-3-rutinoside. These findings suggest that banana inflorescence, an agricultural waste product, can be efficiently utilized as a source of bioactive compounds using ASE, contributing to sustainable practices in the food and nutraceutical industries. The optimized extraction process provides a promising approach for the valorization of banana inflorescence, enhancing its potential as a functional ingredient in food products.
Collapse
Affiliation(s)
- Nuwanthi Senevirathna
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Morteza Hassanpour
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Ian O’Hara
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000, Australia
- ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology, Brisbane 4000, Australia
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia; (N.S.); (M.H.); (I.O.)
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
2
|
Nazir M, Haq MA, Sherazi SMB, Naz S, Mobin L, Tsoupras A. Effects of Polyphenolic Extracts From Sumac, Pomegranate Peel, Indian Almond Leaves, Falsa, and Banana Bracts on Calcium Oxalate and Brushite Crystallization In Vitro. Chem Biodivers 2025:e202500023. [PMID: 40067092 DOI: 10.1002/cbdv.202500023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Nephrolithiasis, or kidney stone formation, is a widespread global health concern. This study examines the effects of polyphenolic extracts, along with their anthocyanin and non-anthocyanin fractions, from sumac fruit, pomegranate peel, almond leaves, falsa fruit, and banana bracts on the crystallization of calcium oxalate (CaC2O4·nH2O) and brushite (CaHPO4·2H2O) in vitro. The extracts were prepared through maceration in aqueous methanol and further fractionated into anthocyanin and non-anthocyanin fractions using solid-phase extraction. For calcium oxalate crystallization, nucleation and aggregation were monitored using a spectrophotometer in the presence and absence of these extracts and fractions. For brushite crystallization, the single diffusion gel growth method was employed. All extracts inhibited the crystallization of both calcium oxalate and brushite in a dose-dependent manner, significantly reducing crystal number, size, and altering crystal morphology. Non-anthocyanin fractions demonstrated a stronger inhibitory effect than anthocyanin fractions. Molecular docking studies further revealed that compounds in these fractions exhibited strong binding affinity with proteins involved in the adhesion and aggregation of calcium oxalate crystals to renal cells, supporting their antilithogenic properties. These findings suggest that these natural polyphenolic sources hold promise as potential inhibitors of kidney stone formation.
Collapse
Affiliation(s)
- Mudassir Nazir
- Department of Food Science & Technology, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Abdul Haq
- Department of Food Science & Technology, University of Karachi, Karachi, Sindh, Pakistan
| | | | - Shahina Naz
- Department of Food Science & Technology, University of Karachi, Karachi, Sindh, Pakistan
| | - Lubna Mobin
- Department of Food Science & Technology, University of Karachi, Karachi, Sindh, Pakistan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, University of Thrace, Kavala University Campus, St Lukas, Kavala, Greece
| |
Collapse
|
3
|
Suresh S, Vellapandian C. Assessment of oral toxicity and safety profile of cyanidin: acute and subacute studies on anthocyanin. Future Sci OA 2024; 10:FSO982. [PMID: 38827809 PMCID: PMC11140675 DOI: 10.2144/fsoa-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 06/05/2024] Open
Abstract
Aim: Purified anthocyanins lack a detailed safety profile, prompting the need for comprehensive oral toxicity research. Materials & methods: Sprague-Dawley rats aged 8 weeks received 300 mg/kg cyanidin orally for 14 days in acute toxicity (OECD 423). In the subacute study (OECD 407), adult SD rats were administered 7.5, 15 and 30 mg/kg/day cyanidin orally for 28 days. Results: Acute toxicity indicated an LD50 exceeding 300 mg/kg/day without adverse effects. Subacute toxicity at 7.5-30 mg/kg/day showed well-tolerated responses in both genders. No significant alterations in organ weights, hematological parameters, liver/kidney functions or adverse histopathological findings were observed. Conclusion: Oral cyanidin administration demonstrated high safety and tolerance in rats, establishing a NOAEL at 30 mg/kg/day, affirming cyanidin's safety for oral use.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Chitra Vellapandian
- Dean, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu,Tamil Nadu, 603203, India
| |
Collapse
|
4
|
de Oliveira Costa G, Mansur Pontes CL, Parize AL, Sandjo LP. Unveiling chemical responses in the kombucha-based fermentation of black tea, banana flower, and grape juice: LC-ESIMS, GNPS, MS-DIAL, and MS-FINDER-assisted chemical characterization. Food Funct 2024; 15:2497-2523. [PMID: 38334749 DOI: 10.1039/d3fo04977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The lack of studies evaluating the chemical responses of kombucha microorganisms when exposed to plants is notable in the literature. Therefore, this work investigates the chemical behaviour of 7-, 14- and 21 day-fermentation of kombucha derived from three extracts obtained from banana inflorescence, black tea, and grape juice. After the acquisition of UPLC-ESI-MS data, GNPS molecular networking, MS-Dial, and MS-Finder were used to chemically characterize the samples. The microbial chemical responses were enzymatic hydrolysis, oxidation, and biosynthesis. The biosynthesis was different among the kombucha samples. In fermented black tea, gallic and dihydrosinapic acids were found as hydrolysis products alongside a sugar-derived product namely 7-(α-D-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid. The sphingolipids, safingol and cedefingol alongside capryloyl glycine and palmitoyl proline were identified. In fermented grapes, sugar degradation and chemical transformation products were detected together with three cell membrane hopanoids characterized as hydroxybacteriohopanetetrol cyclitol ether, (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol ether, and methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol. The fermented banana blossom showed the presence of methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol together with sphingofungin B, sphinganine and other fatty acid derivatives. Parts of these samples were tested for their inhibition against α-glucosidase and their antioxidant effects. Except for the 14-day fermented extracts, other black tea extracts showed significant inhibition of α-glucosidase ranging from 42.5 to 42.8%. A 14-day fermented extract of the banana blossom infusion showed an inhibition of 29.1%, while grape samples were less active than acarbose. The 21-day fermented black tea extract showed moderate antioxidant properties on a DPPH-based model with an EC50 of 5.29 ± 0.10 μg mL-1, while the other extracts were weakly active (EC50 between 80.76 and 168.12 μg mL-1).
Collapse
Affiliation(s)
| | - Carime L Mansur Pontes
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Alexandre L Parize
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Louis P Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Enzymatic treatment in black tea manufacturing processing: Impact on bioactive compounds, quality, and bioactivities of black tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. In this context, adding value to food waste is an obvious strategy to mitigate food shortages, but there is a long way to go in this field. Globally, it is estimated that one-third of all food produced is lost. This is certainly due to many different factors, but the lack of awareness of the consumer about the nutritional value of certain foods parts, namely peels and seeds, is certainly among them. In this review, we will unveil the nutritional and bioactive value of the waste discarded from the most important fresh fruit and vegetables consumed worldwide as a strategy to decrease food waste. This will span the characterization of the bioactive composition of selected waste from fruits and vegetables, particularly their seeds and peels, and their possible uses, whether in our diet or recycled to other ends.
Collapse
|
7
|
Mostafa HS. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J Food Sci 2021; 86:3778-3797. [PMID: 34337757 DOI: 10.1111/1750-3841.15854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Bananas (Musaceae) are one of the world's most common fruit crops and the oldest medicinal plants that are used to treat a variety of infections. There has been recent interest in elucidating the efficiency of the naturally active ingredients, particularly the antimicrobials, in this plant. This review begins with a short background of the banana plant and its cultivars as well as a brief description of its parts. Different experimental tests of the antimicrobial effects and the responsible bioactive compounds of the banana part extracts are then elaborated. A variety of recent and evolving applications of banana parts in the development of functional bakery, dairy, beverage, and meat products as a wheat substitute, fiber/prebiotic source, fat/sucrose substitute, and natural antioxidant are also discussed. Finally, the recent challenges and opportunities presented by different banana parts in creating bio-packaging materials and bactericidal nanoparticles are addressed. This plant contains a variety of antimicrobial substances, including dopamine, gentisic acid, ferulic acid, lupeol, and 3-carene. However, few studies have been conducted on its use as a bio-preservative in food products; it should also be seen as a natural source of both antimicrobial and antioxidant agents. It offers a potentially simple eco-friendly alternative to antibacterial and fungicidal agents rather than chemicals. Low cost, reliable methods for purifying these compounds from banana waste could be useful for food storage and creating more value-added bio-packaging products for perishable food goods.
Collapse
Affiliation(s)
- Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|