1
|
Zhang Z, Li J, Yang Y, Gong Q, Li H, Rao S, Zheng X, Yang Z. Degradation of patulin by a yeast strain Kluyveromyces marxianus XZ1 and its mechanism. Food Microbiol 2025; 129:104758. [PMID: 40086987 DOI: 10.1016/j.fm.2025.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Patulin (PAT) produced by genus of Penicillium spp attracted more and more concern in view of its widespread contamination in food and toxic effects, which has also promoted the research on the reduction of PAT contamination in food. The use of yeast to remove PAT in food is innovative and promising. In this study, we used the yeast Kluyveromyces marxianus XZ1 to degrade PAT, which can remove 90% of PAT (10 μg/mL) within 48 h. XZ1 exhibits high degradation effect on PAT under the conditions of pH range of 3-6, temperatures of 28-37 °C, and initial PAT concentrations below 50 μg/mL. PAT removing by XZ1 was carried out by intracellular enzymes. XZ1 or intracellular enzyme was able to remove 100% of 10 μg/mL PAT in raw apple juice or commercial apple juice within 60 h. Patulin oxidoreductase (KmPAO) was identified as a potential PTA-degrading enzymes, which degrade PAT to form ascladiol. The degradation products of PAT by XZ1 were identified as ascladiol and desoxypatulinic acid, which was then complete degraded to form unknown final degradation products. Toxic analyses on Caco-2 cells showed that the ascladiol, desoxypatulinic acid and the final degradation products were significantly less toxic compared to PAT, which was mainly manifested in less influence on cell vitality, cell integrity and reactive oxygen species accumulation compared to PAT. Finally, the results revealed the PAT degradation enzyme, as well as the safety of the degradation products, which provide basis for the future application of this yeast to decontamination of PAT in food.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiran Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinghua Gong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
2
|
Han Z, Shi S, Yao B, Shinali TS, Shang N, Wang R. Recent Insights in
Lactobacillus
-Fermented Fruit and Vegetable Juice: Compositional Analysis, Quality Evaluation, and Functional Properties. FOOD REVIEWS INTERNATIONAL 2025:1-35. [DOI: 10.1080/87559129.2025.2454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Affiliation(s)
- Zixin Han
- China Agricultural University
- China Agricultural University
| | | | | | | | - Nan Shang
- China Agricultural University
- China Agricultural University
| | | |
Collapse
|
3
|
Shi F, Qin Y, Qiu S, Luo Y. Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei. Foods 2024; 13:3666. [PMID: 39594082 PMCID: PMC11593764 DOI: 10.3390/foods13223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh raspberries are highly perishable, but lactic acid bacteria fermentation offers a favourable method for developing healthy products. This study investigated the effects of Lacticaseibacillus paracasei fermentation on the nutrients and phytochemicals of red raspberry nectar using widely targeted metabolomics, as well as its antioxidant activity. The fermentation notably disrupted the raspberry tissue structure, reshaped its non-volatile composition, and increased its DPPH and hydroxyl free radical scavenging abilities. A total of 261 compounds showed significant differences, with 198 upregulated and 63 downregulated. Among these, certain flavonoid glucosides (e.g., pelargonid-in-3-O-rutinoside, delphinidin-3-O-rutinoside-7-O-glucoside, and kaempferol-3-O-glucoside) were significantly downregulated, while some bioactive phenolic acids (e.g., 3-(4-Hydroxyphenyl)-propionic acid and DL-3-phenyllactic acid), alkaloids (e.g., deoxymutaaspergillic acid and indole-3-lactic acid), amino acids (e.g., L-phenylalanine and L-glutamine), and B vitamins (e.g., VB6, VB7, and VB3) were substantially upregulated. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analysis revealed that metabolic pathways and the biosynthesis of secondary metabolites contributed significantly to the new profile of fermented red raspberry nectar. These findings provide valuable insights for developing fermented raspberry products using Lacticaseibacillus paracasei, which can help minimise fresh raspberry loss and enhance their valorisation.
Collapse
Affiliation(s)
- Feng Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
| | - Yin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Shuyi Qiu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
| | - You Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
4
|
Yuan YH, Mu DD, Guo L, Wu XF, Chen XS, Li XJ. From flavor to function: A review of fermented fruit drinks, their microbial profiles and health benefits. Food Res Int 2024; 196:115095. [PMID: 39614507 DOI: 10.1016/j.foodres.2024.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Fermented fruit drinks (FFDs) are gaining popularity among consumers for their unique flavors and potential health benefits. This review provides a systematic assessment of the flavor components in FFDs and explores the metabolic pathways for their formation. We examine the interactions between the structure of microbial communities and the development of these flavor components, highlighting the role of microorganisms in shaping the unique taste of FFDs. Additionally, we discuss the potential health benefits associated with FFDs, focusing on their relationship with microbial communities as supported by existing literature. The review also addresses future prospects and challenges in the field. Our findings indicate key fermenting microorganisms, such as lactic acid bacteria, yeast and acetic acid bacteria, are responsible for producing the distinctive flavor components in FFDs, including alcohols, ketones, aldehydes, esters, and fatty acids. These microorganisms also generate organic acids, amino acids, and carbohydrates, contributing to the drink's complex taste. Furthermore, this fermentation process enhances the bioactivity of FFDs, offering potential health benefits like antioxidant, anti-obesity, anti-diabetic, and anti-cancer properties. These insights are crucial for advancing fermentation technology and developing guidelines for producing nutrient-rich, flavorful FFDs.
Collapse
Affiliation(s)
- Yu-Han Yuan
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Dong-Dong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Xue-Feng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiang-Song Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
5
|
Wang C, Sun S, Zhou H, Cheng Z. The Influence of Lactiplantibacillus plantarum and Oenococcus oeni Starters on the Volatile and Sensory Properties of Black Raspberry Wine. Foods 2023; 12:4212. [PMID: 38231611 DOI: 10.3390/foods12234212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Malolactic fermentation (MLF) by different lactic acid bacteria has a significantly influence on the aromatic and sensory properties of wines. In this study, four strains including two Oenococcus oeni (commercial O-Mega and native DS04) and two Lactiplantibacillus plantarum (commercial NoVA and native NV27) were tested for their performances over MLF and effects on the basic composition, volatile components and sensory property of black raspberry wine. Results of microbial growth kinetics showed Lactiplantibacillus strains had higher fermentation efficiency than Oenococcus. The volatile compounds were determined by GC-IMS; NoVA and NV27 had higher production of volatile esters, and DS04 synthesized more amounts of acetate esters and several alcohols. In terms of sensory evaluation, NV27 and DS04 showed great aroma properties due to the enhanced fruity and sweet aroma. Furthermore, PLS was used for the establishment of the relationship between volatiles and sensory odors and sensory data interpretation.
Collapse
Affiliation(s)
- Changsen Wang
- School of Food Engineering, Ludong University, Yantai 264025, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Haoran Zhou
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Zhenzhen Cheng
- School of Food Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
6
|
Rajendran S, Silcock P, Bremer P. Flavour Volatiles of Fermented Vegetable and Fruit Substrates: A Review. Molecules 2023; 28:3236. [PMID: 37049998 PMCID: PMC10096934 DOI: 10.3390/molecules28073236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Health, environmental and ethical concerns have resulted in a dramatic increase in demand for plant-based dairy analogues. While the volatile organic compounds (VOCs) responsible for the characteristic flavours of dairy-based products have been extensively studied, little is known about how to reproduce such flavours using only plant-based substrates. As a first step in their development, this review provides an overview of the VOCs associated with fermented (bacteria and/or fungi/yeast) vegetable and fruit substrates. Following PRISMA guidelines and using two English databases (Web of Science and Scopus), thirty-five suitable research papers were identified. The number of fermentation-derived VOCs detected ranged from 32 to 118 (across 30 papers), while 5 papers detected fewer (10 to 25). Bacteria, including lactic acid bacteria (LAB), fungi, and yeast were the micro-organisms used, with LAB being the most commonly reported. Ten studies used a single species, 21 studies used a single type (bacteria, fungi or yeast) of micro-organisms and four studies used mixed fermentation. The nature of the fermentation-derived VOCs detected (alcohols, aldehydes, esters, ketones, acids, terpenes and norisoprenoids, phenols, furans, sulphur compounds, alkenes, alkanes, and benzene derivatives) was dependent on the composition of the vegetable/fruit matrix, the micro-organisms involved, and the fermentation conditions.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 42400, Sri Lanka
| | - Patrick Silcock
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Isas AS, Escobar F, Álvarez-Villamil E, Molina V, Mateos R, Lizarraga E, Mozzi F, Van Nieuwenhove C. Fermentation of pomegranate juice by lactic acid bacteria and its biological effect on mice fed a high-fat diet. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
8
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Zheng X, Xia F, Li J, Zheng L, Rao S, Gao L, Yang Z. Reduction of ochratoxin A from contaminated food by Lactobacillus rhamnosus Bm01. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li X, Cheng X, Yang J, Wang X, Lü X. Unraveling the difference in physicochemical properties, sensory, and volatile profiles of dry chili sauce and traditional fresh dry chili sauce fermented by Lactobacillus plantarum PC8 using electronic nose and HS-SPME-GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bendaali Y, Vaquero C, González C, Morata A. Elaboration of an organic beverage based on grape juice with positive nutritional properties. Food Sci Nutr 2022; 10:1768-1779. [PMID: 35702314 PMCID: PMC9179161 DOI: 10.1002/fsn3.2795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to develop a natural beverage with interesting phytochemical composition and biological activity based on grape juice without added sugars or artificial additives. Two groups of blends were made by diluting concentrate grape juice with a sugar content of 65 °Brix with two different mineral waters (BA: Bezoya with low mineralization; BB: Solan de Cabras with high mineralization). Lemon juice was used for pH correction, and mixtures of extractions of hop with tea and hop with mint were used to increase aroma. Samples were stored under refrigeration (4°C) then subjected to physicochemical and sensory analysis. The results demonstrated that malvidin-3-O-glucoside pigment was the predominant pigment with a concentration ranging from 75.71 ± 12.49 to 84.87 ± 1.70 mg/L. The levels of sugars ranged from 79.90 ± 1.37 to 82.37 ± 0.55 g/L and total soluble solids were between 5.47 ± 0.12 and 5.77 ± 0.06 °Brix. Total acids presented a significant difference, ranging from 1.40 ± 0.00 to 1.43 ± 0.06 g/L in BA samples and from 1.10 ± 0.10 to 1.20 ± 0.00 g/L in BB samples. For 20 days, the color increased in all beverages. However, BA drinks presented higher acidity and higher red color intensity than BB drinks, so the type of water and pH influenced the color of beverages. The sensory evaluation showed that the beverage made with low mineral water and flavored with a mixture of hop with tea was preferred.
Collapse
Affiliation(s)
- Yasmina Bendaali
- Department of Chemistry and Food TechnologyETSIAABUniversidad Politécnica de MadridMadridSpain
| | - Cristian Vaquero
- Department of Chemistry and Food TechnologyETSIAABUniversidad Politécnica de MadridMadridSpain
| | - Carmen González
- Department of Chemistry and Food TechnologyETSIAABUniversidad Politécnica de MadridMadridSpain
| | - Antonio Morata
- Department of Chemistry and Food TechnologyETSIAABUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
12
|
Yang A, Liao Y, Zhu J, Zhang J, Wu Z, Li X, Tong P, Chen H, Wang S, Liu Z. Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|