1
|
Aleryani H, Abdo AAA, Al-Assaf S, Al-Zamani Z, Auriol Ivane NM, Guifang T, Al-Romaima A, Tan J, Sang Y. UPLC-Q-TOF-MS/MS identification, antioxidant, and alpha-glucosidase inhibition activities of three forms of phenolic compounds from Yemeni jujube fruit: In vitro and in silico investigations. Food Chem 2025; 480:143670. [PMID: 40121876 DOI: 10.1016/j.foodchem.2025.143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Jujube fruits have rich medicinal value due to their biological properties which are affected mainly by geographical locations. This study investigates the antioxidant properties of free fraction (FF), esterified fraction (EF), bound fraction (BF), and other metabolites prepared from dried Yemeni jujube fruit and compare to those previously reported in the literature. Results from UPLC-Q-TOF-MS/MS analysis showed that this fruit consists of a total of 33, 26, and 27 free, esterified, and bound compounds identified, respectively. In terms of ABTS, DPPH, FRAP, and H2O2 assays, the BF exhibited values 1.2, 1.3,1.3, and 1.4 times higher than those of the FF, and similarly, 1.8, 1.9,2.0, and 2.5 times higher than the EF. A similar trend was observed in the inhibition of α-glucosidase (α-Glu), where the BF was 1.6, and 2.4 times more effective compared to the FF and EF, respectively. In silico analysis showed that flavonoids, the key active compounds, had substantial α-glucosidase binding capacity. In the meat model, all fractions inhibited protein and lipid oxidation during storage, and the BF exhibited the highest antioxidant capacity. This study provides the first investigation of the structure of active compounds and their biological properties in Yemeni jujube fruit. Yemeni fruits can be utilized as natural antioxidants, and nutraceuticals in food preservation, and medicine respectively.
Collapse
Affiliation(s)
- Hamzah Aleryani
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Food Sciences, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen
| | - Abdullah A A Abdo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Food Sciences, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen
| | - Saphwan Al-Assaf
- Hydrocolloids Research Centre, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Zakarya Al-Zamani
- Department of Food Sciences, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen
| | - Ngoua Moffo Auriol Ivane
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Tian Guifang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Kang HY, Yeh AI, Pan MH. Enhancing the Physicochemical Properties, Bioactivity, and Functional Applications of Fresh Jujube Juice Using Media Milling. ACS OMEGA 2025; 10:12603-12614. [PMID: 40191370 PMCID: PMC11966583 DOI: 10.1021/acsomega.5c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
This study systematically evaluated the effects of media milling on the physicochemical properties, bioactive compound content, and functional applications of fresh jujube (Ziziphus jujuba Mill.) juice. Optimization experiments identified ideal conditions for nanoparticle production, including 5% solid content and a 180 min milling duration, resulting in significantly reduced particle sizes-volume-weighted average diameter (from 229.0 ± 1.0 to 25.0 ± 0.2 μm) and number-weighted average diameter (from 7.2 ± 0.0 to 0.1 ± 0.0 μm)-and improved dispersion stability. Media milling enhanced key physicochemical properties such as zeta potential, viscosity, and suspension stability, while also modifying color and pH. The process notably increased the content of bioactive compounds, including total flavonoids (from 2.9 ± 0.1 to 3.8 ± 0.0 mg catechin equivalent (CE)/g dry weight (DW)) and triterpenoids (from 15.4 ± 1.2 to 28.0 ± 4.9 mg oleanolic acid equivalent (OAE)/g DW). The antioxidant activity before and after media milling, assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, remained comparable. Fermentation with Lactiplantibacillus plantarum demonstrated that both blended and media-milled jujube juice can serve as effective substrates for substrate utilization and lactic acid production. Anti-inflammatory assays using RAW 264.7 macrophages revealed reduced nitric oxide production and lower levels of pro-inflammatory cytokines such as IL-1β, showcasing the juice's potential to modulate inflammation. In a dextran sodium sulfate (DSS)-induced colitis mouse model, media-milled jujube juice demonstrated safety, though it did not show significant protective effects. These findings position media-milled jujube juice as a promising functional food ingredient with potential applications in health promotion and disease management.
Collapse
Affiliation(s)
- Hong-Yi Kang
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - An-I Yeh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University
Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Wan Z, Ji Z, Zhao D, Liu Y, Zhang Z, Hao J. Study on the quality characteristics of jujube slices under different pretreatment and drying methods. ULTRASONICS SONOCHEMISTRY 2025; 115:107305. [PMID: 40068525 PMCID: PMC11931247 DOI: 10.1016/j.ultsonch.2025.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
This study investigates the effects of different pretreatment methods, cold plasma (CP) and ultrasound (US), as well as different drying techniques, including vacuum freeze-drying (FD), hot air drying (HAD), and microwave coupled with pulsed vacuum drying (MPVD), on the quality characteristics of winter jujube slices. The physical, chemical, and functional properties were analyzed, encompassing farinograph attributes, particle size, cation exchange capacity, total phenolic and flavonoid content, and flavor compounds were analyzed. In terms of physical properties, jujube slices subjected to MPVD demonstrate superior water-holding capacity at 2.93 g/g and enhanced fluidity, with a sliding angle of 34.98° and an angle of repose of 43.47°, compared to FD jujube slices. Additionally, it exhibits a rehydration capacity of 2.98 g/g and a bulk density of 0.49 g/mL. Regarding chemical composition, the cation exchange capacity of US-FD jujube slices is measured at 0.64 mmol/g, while the total phenolic content reaches 11.97 mg/g, and the flavonoid content in CP-MPVD jujube slices is 5.21 mg/g. Notably, the cation exchange capacity of MPVD jujube slices pretreated by CP and US is 0.46 and 0.55 mmol/g, respectively. Concerning volatile compounds and flavor, FD slices retain higher concentrations of aldehydes (11.39 %) and alkenes (16.88 %), whereas MPVD slices contain 21.20 % alkanes. HAD slices contain the highest aromatic hydrocarbon content at 34.97 %. In summary, the optimized combination of CP and MPVD can enhance the drying efficiency of jujube slices, increase the flavonoid content in jujube slices, and improve their quality characteristics.
Collapse
Affiliation(s)
- Zhengdong Wan
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Zhuofan Ji
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China; Hebei Provincial Functional Food Technology Innovation Center, Shijiazhuang 050018, China.
| | - Yamei Liu
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China; Hebei Provincial Functional Food Technology Innovation Center, Shijiazhuang 050018, China; Technical Institute of Physics and Chemistry CAS, Beijing 100190, China
| | - Zhentao Zhang
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China; Technical Institute of Physics and Chemistry CAS, Beijing 100190, China
| | - Jianxiong Hao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 050018, China; Hebei Provincial Functional Food Technology Innovation Center, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Lu Q, Ye Z, Yang C. Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules 2025; 30:619. [PMID: 39942723 PMCID: PMC11820555 DOI: 10.3390/molecules30030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Proanthocyanidins have received extensive attention due to their high functional value, but their sources are limited. Therefore, this experiment studied the preparation, biological activities, and characterization of proanthocyanidins from Chinese jujube (Ziziphus jujuba Mill. cv. Muzao) at different periods, aiming to explore a new source of proanthocyanidins and enhance their utilization value. Through ultrasonic-assisted enzymatic extraction, the optimal extraction conditions for PC from Muzao were determined, yielding a proanthocyanidin content of 2.01%. Purification using AB-8 macroporous resin increased the proanthocyanidin content by 11 times. The bioactivity results indicated that proanthocyanidins demonstrated significant in vitro antioxidant activity (scavenging rate ≥ 83.4%) and blood glucose-lowering activity (inhibition rate ≥ 84.7%). Both activities decreased with maturity, while the degree of polymerization also exhibited a positive effect. Mass spectrometry identified a total of 102 compounds, with cyanidin-based compounds being the most abundant, comprising 28 species. The comprehensive research results indicate that the oligomeric proanthocyanidins extracted, purified, and isolated from Muzao during the young fruit stage exhibit diverse biological activities and are abundant in content. They can be utilized for the extraction and purification of proanthocyanidins, offering a reference for the expansion of natural sources of proanthocyanidins and the development of functional foods.
Collapse
Affiliation(s)
- Qiaoshuang Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zheng Ye
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| | - Chun Yang
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| |
Collapse
|
5
|
Muhammad N, Uddin N, Liu Z, Yang M, Liu M. Research Progress and Biosynthetic Mechanisms of Nutritional Compounds Obtained from Various Organs During the Developmental Stages of a Medicinal Plant (Chinese Jujube). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:744-758. [PMID: 39150636 DOI: 10.1007/s11130-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The fruit of the jujube tree is high in nutrients and has various health benefits. China is a major producer of jujube, and it is now cultivated all around the world. Numerous studies have demonstrated the nutritional value and potential health advantages of bioactive compounds found in the jujube tree. Furthermore, the jujube tree has a remarkable 7000-year agricultural history. The jujube plant has developed a rich gene pool, making it a valuable resource for germplasm. Different studies have focused on the developmental stages of jujube fruits to identify the optimal time for harvest and to assess the changes in their bioactive natural compounds or products during the process of development but the molecular mechanism underlying the production of bioactive natural products in Z. jujuba is still poorly understood. Moreover, the potential differential expressed genes (DEGs) identified as responsible for the synthesis of these compounds should be further functionally verified. It has been noticed that the contents of total flavonoids, total phenolic, and vitamin C increase significantly during the ripening process, while the contents of soluble sugars and organic acids decrease gradually. In this review, we have also scrutinized the challenges that hinder the utilization of jujube fruit resources and suggested potential areas for further research. As such, our review serves as a valuable resource for the future development of jujube-based nutritional compounds and the incorporation of their nutritional elements into the functional foods industry.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China.
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China.
| | - Nisar Uddin
- School of Emergency Management, School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China.
| |
Collapse
|
6
|
Zhang X, Wang Y, Wu F, Gu D, Tao H, Zhang R. Organic acid and aromatic compounds create distinctive flavor in the blackening process of jujube. Food Chem 2024; 439:138199. [PMID: 38100871 DOI: 10.1016/j.foodchem.2023.138199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Previous studies demonstrated jujube blackening effectively increased cyclic adenosine phosphate and triterpene acid levels, improving its nutritional value. However, compositional changes during this process require further elucidation. The objective aimed to analyze compositional transformations during this process with SEM, TPA, UPLC-MS, E-nose. Results showed decreased hardness, springiness, and chewiness coupled with increased gumminess over blackening durations. Untargeted omics analysis revealed increases of 2-aminooctadec-8-ene-1,3,4-trioland carbendazim. Targeted organic acid analysis showed initial citric acid accumulation (1481.62 to 1645.78 mg/kg) in the first 24 h, then declines to 1072.96 mg/kg. Meanwhile, oxalic and lactic acids steadily rose, peaking at 96-120 h before slightly decreasing. E-nose analysis implied alterations in organic sulfide aromatics engendered the characteristic flavors. Organic acid fluctuations likely resulted from sugar biotransformation and thermal degradation. These comprehensive analyses demonstrate jujube blackening imparts a rich and unique flavor, providing theoretical support for investigating the mechanisms and products underlying this process.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuxiao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fei Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Duanyin Gu
- Tai'an Academy of Agricultural Science, Tai'an, Shandong 271018, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rentang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Laoling Healthy Food Industry Technology Research Institute, Dezhou 253600, China.
| |
Collapse
|
7
|
Li Z, Wu M, Wei W, An Y, Li Y, Wen Q, Zhang D, Zhang J, Yao C, Bi Q, Guo D. Fingerprinting Evaluation and Gut Microbiota Regulation of Polysaccharides from Jujube ( Ziziphus jujuba Mill.) Fruit. Int J Mol Sci 2023; 24:ijms24087239. [PMID: 37108402 PMCID: PMC10138826 DOI: 10.3390/ijms24087239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Jujube fruit was well-loved and praised by the broad masses due to its delicious taste, abundant nutritional value, and medicinal properties. Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides of jujube fruits from different producing areas. In the present study, multi-level fingerprint profiling, including polysaccharides, oligosaccharides, and monosaccharides, was established for the quality evaluation of polysaccharides from jujube fruits. For polysaccharides, the total content in jujube fruits ranged from 1.31% to 2.22%, and the molecular weight distribution (MWD) ranged from 1.14 × 105 to 1.73 × 106 Da. The MWD fingerprint profiling of polysaccharides from eight producing areas was similar, but the profile of infrared spectroscopy (IR) showed differentiation. The characteristic signals were screened and used to establish a discrimination model for the identification of jujube fruits from different areas, and the accuracy of identification reached 100.00%. For oligosaccharides, the main components were galacturonic acid polymers (DP, 2-4), and the profile of oligosaccharides exhibited high similarity. The monosaccharides, GalA, Glc, and Ara, were the primary monosaccharides. Although the fingerprint of monosaccharides was semblable, the composing proportion of monosaccharides revealed significant differences. In addition, the polysaccharides of jujube fruits could regulate the gut microbiota composition and possess potential therapeutic effects on dysentery and nervous system diseases.
Collapse
Affiliation(s)
- Zhenwei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Menglei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuyi Wen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Daidi Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De'an Guo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
8
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
9
|
Effects of maceration with phenolic additives on the physicochemical properties and antioxidant activity of blackened jujube (Ziziphus jujuba Mill.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Yang X, Yang C, Tang D, Yu Q, Zhang L. Effects of dietary supplementation with selenium yeast and jujube powder on mitochondrial oxidative damage and apoptosis of chicken. Poult Sci 2022; 101:102072. [PMID: 36055020 PMCID: PMC9445384 DOI: 10.1016/j.psj.2022.102072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
The main objective of this study was to explore the effects of dietary selenium yeast and jujube powder on mitochondrial oxidative damage and cell apoptosis of broilers during postmortem aging, chicken breasts of broilers fed diets supplemented with different concentrations of selenium yeast and jujube powder were used as research subjects. With the prolongation of postmortem aging time, the levels of reactive oxygen species (ROS), carbonyl content, mitochondrial permeability transition pore (MPTP) openness, and mitochondrial membrane permeability increased significantly (P < 0.05). The contents of the sulfhydryl, mitochondrial membrane potential, shear force, and cytochrome C (Cyt-c) reduction level decreased significantly (P < 0.05). The activity of Caspase-3 and Caspase-9 increased from 0 to 24 h postmortem but fell from 24 to 72 h postmortem. Compared with the control group, dietary selenium yeast and jujube powder significantly reduced mitochondrial oxidative damage. They greatly increased the shear force, mitochondrial membrane potential, and Cyt-c reduction levels (P < 0.05). Among them, the combination group of high-dose selenium yeast and jujube powder had more significant effects on ROS scavenging, reducing cell membrane permeability, protecting cell membrane integrity, and increasing Cyt-c reduction level (P < 0.05). In conclusion, cell apoptosis intensifies during the chicken breast's aging time, and muscle tenderness continues. Still, different doses of dietary selenium yeast and jujube powder can inhibit mitochondrial oxidation to various degrees. The combined group of selenium yeast and jujube powder with 0.6 mg·kg−1 has the best effect. This study is of great significance for applying natural antioxidant ingredients such as selenium yeast and jujube powder in the development and utilization of poultry feed.
Collapse
|