1
|
Anand A, Garg VK, Agrawal A, Mangla S, Pathak A. Distribution and concentration pathway of particulate pollution during pandemic-induced lockdown in metropolitan cities in India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023:1-14. [PMID: 37360554 PMCID: PMC10258753 DOI: 10.1007/s13762-023-05025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/23/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
To characterize the pollutant dispersal across major metropolitan cities in India, daily particulate matter (PM10 and PM2.5) data for the study areas were collected from the National Air Quality Monitoring stations database provided by the Central Pollution Control Board (CPCB) of India. The data were analysed for three temporal ranges, i.e. before the pandemic-induced lockdown, during the lockdown, and after the upliftment of lockdown restrictions. For the purpose, the time scale ranged from 1st April to 31st May for the years 2019 (pre), 2020, and 2021 (post). Statistical distributions (lognormal, Weibull, and Gamma), aerosol optical thickness, and back trajectories were assessed for all three time periods. Most cities followed the lognormal distribution for PM2.5 during the lockdown period except Mumbai and Hyderabad. For PM10, all the regions followed the lognormal distribution. Delhi and Kolkata observed a maximum decline in particulate pollution of 41% and 52% for PM2.5 and 49% and 53% for PM10, respectively. Air mass back trajectory suggests local transmission of air mass during the lockdown period, and an undeniable decline in aerosol optical thickness was observed from the MODIS sensor. It can be concluded that statistical distribution analysis coupled with pollution models can be a counterpart in studying the dispersal and developing pollution abatement policies for specific sites. Moreover, incorporating remote sensing in pollution study can enhance the knowledge about the origin and movement of air parcels and can be helpful in taking decisions beforehand.
Collapse
Affiliation(s)
- A. Anand
- Department of Environmental Sciences and Technology, Central University of Punjab, Ghudda, Bathinda, Punjab India
| | - V. K. Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Ghudda, Bathinda, Punjab India
| | - A. Agrawal
- Department of Mathematics and Statistics, Central University of Punjab, Ghudda, Bathinda, Punjab India
| | - S. Mangla
- International Institute for Population Sciences, Mumbai, India
| | - A. Pathak
- Department of Statistics, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Chen Y, Wang D, ElAmraoui A, Guo H, Ke X. The effectiveness of traffic and production restrictions on urban air quality: A rare opportunity for investigation. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:225-239. [PMID: 35993663 DOI: 10.1080/10962247.2022.2115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Traffic and production restrictions are two important emergency measures for controlling urban air pollution. The lockdown policies implemented during the COVID-19 pandemic period are nearly equivalent to the policies of traffic and production restriction, which provides a rare opportunity to quantitatively evaluate the effectiveness of these emergency measures. Taking Wuhan, China as the study area, this paper firstly verified the changes in six air pollutants and analyzed their change rules in different lockdown periods using statistical methods. Then the structural breakpoints in air pollutants were detected via regression discontinuity design model. To comprehensively understand the effects of restrictions on air pollution, the influences of meteorological conditions on air pollution were also investigated. The results illustrated that the concentrations of PM2.5, PM10 and NO2 decreased significantly during lockdown period. By comparing with the RDD coefficients of PM2.5 (-34.46), PM10 (-37.11) and NO2 (-19.15), the lockdown had little effect on CO (-0.32). The traffic and production restrictions had no apparent effects on SO2. Although O3 showed an increasing trend, the increase was not limited to the lockdown period, meaning that the traffic and production restrictions had less effect on the increasing trend of O3 concentration. Moreover, the structural breakpoints were verified in four air pollutants (PM2.5, PM10, NO2, and CO), and the structural breakpoints were caused by lockdown instead of the Spring Festival. The results also indicated that the meteorological conditions were not the main reasons for the changes in air pollutants during the lockdown period. This paper reveals how the traffic and production restrictions affect urban air pollution and provides a strong implementation basis for the air pollution control policy.Implications: The traffic and production restrictions are two important emergency measures for controlling heavy urban air pollution. However, these two measures have never been implemented in a large area like a city for a long enough period, so the effectiveness of these two measures has never been estimated quantitatively at a city level. The lockdown policies implemented during the COVID-19 pandemic are nearly equivalent to the policies of traffic and production restriction, which provides a rare opportunity to quantitatively evaluate the effectiveness of these emergency measures. Thus, this study measured the effectiveness of production and traffic restrictions on different air pollutants. This study provides the following implications: (1) the dominant factors for air pollution changes during the lockdown are traffic and production restriction instead of meteorological conditions; (2) the production and traffic restriction policies are effective for reducing concentrations of PM2.5, PM10 and NO2, while having less effect on O3 and CO concentrations; (3) the sharp changes in air pollutants in 2020 are unlikely to be caused by the Spring Festival. These findings are crucial for making more comprehensive policies for protecting urban air quality.
Collapse
Affiliation(s)
- Yiqing Chen
- School of Economics and Management, China University of Geosciences, Wuhan, People's Republic of China
| | - Deyun Wang
- School of Economics and Management, China University of Geosciences, Wuhan, People's Republic of China
| | - Adnen ElAmraoui
- Univ. Artois, Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), Béthune, France
| | - Haixiang Guo
- School of Economics and Management, China University of Geosciences, Wuhan, People's Republic of China
| | - Xiaoling Ke
- School of Economics and Management, China University of Geosciences, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Asif M, Mahajan P. Impact of COVID-19 lockdown and meteorology on the air quality of Srinagar city: A temperate climatic region in Kashmir Himalayas. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100025. [PMID: 37520075 PMCID: PMC9474402 DOI: 10.1016/j.heha.2022.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
The deadly transmission of the coronavirus forced all countries to implement lockdowns to restrict the transmission of this highly infectious disease. As a result of these lockdowns and restrictions, many urban centers have seen a positive impact on air quality with a significant reduction in air pollution. Therefore, in this study, the impact of COVID-19 lockdown vis-a-vis meteorological parameters on the ambient air quality of Srinagar city was examined. In this regard, we have evaluated the temporal variation of six different key air pollutants (PM10, PM2.5, SO2, NO2, O3, and NH3) along with meteorological parameters (relative humidity, rainfall, temperature, wind speed, and wind direction). The duration of the study was divided into three periods: Before Lockdown(BLD), Lockdown (LD), and Partial Lockdown(PLD). Daily average data for all the parameters was accessed from one of the real-time continuous monitoring stations of the central pollution control board (CPCB) at Rajbagh Srinagar. Some air pollutants have decreased, according to the results, while others have increased. The air quality index (AQI) decreases overall by 6.15 percent compared to before lockdown, and it never exceeds the "moderate" category. The AQI was in the following order for both lockdown and pre-lockdown periods: satisfactory > moderate > good. However, for partial lockdown, it was moderate > satisfactory > good. It was observed that the maximum decrease was seen in the concentration of NO2, NH3 with 75.11% and 69.18%. A modest decrease was observed in PM10 at 3.8%. While SO2 and O3 had an upward trend of 85.82% and 48.74%, The NO2 to SO2 ratio reveals that the emissions of NO2 have substantially decreased due to the complete restriction of transport systems. From principal component analysis for all three study periods, PM10 and PM2.5 were combined into a single component, inferring their shared behavior and source of origin. SO2 and O3 demonstrated identical behavior during the lockdown and partial lockdown periods of study. According to the findings of the study, it is beneficial for the government, environmentalists, and policymakers to impose rigorous lockdown measures, particularly during extreme air pollution events, in order to reduce the damage caused by automotive and industrial emissions.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pranav Mahajan
- Punjab School of Economics Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
4
|
Paital B, Das K. Spike in pollution to ignite the bursting of COVID-19 second wave is more dangerous than spike of SAR-CoV-2 under environmental ignorance in long term: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85595-85611. [PMID: 34390474 PMCID: PMC8363867 DOI: 10.1007/s11356-021-15915-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/07/2021] [Indexed: 04/15/2023]
Abstract
Specific areas in many countries such as Italy, India, China, Brazil, Germany and the USA have witnessed that air pollution increases the risk of COVID-19 severity as particulate matters transmit the virus SARS-CoV-2 and causes high expression of ACE2, the receptor for spike protein of the virus, especially under exposure to NO2, SO2 and NOx emissions. Wastewater-based epidemiology of COVID-19 is also noticed in many countries such as the Netherlands, the USA, Paris, France, Australia, Spain, Italy, Switzerland China, India and Hungary. Soil is also found to be contaminated by the RNA of SARS-CoV-2. Activities including defecation and urination by infected people contribute to the source for soil contamination, while release of wastewater containing cough, urine and stool of infected people from hospitals and home isolation contributes to the source of SARS-CoV-2 RNA in both water and soil. Detection of the virus early before the outbreak of the disease supports this fact. Based on this information, spike in pollution is found to be more dangerous in long-term than the spike protein of SARS-CoV-2. It is because the later one may be controlled in future within months or few years by vaccination and with specific drugs, but the former one provides base for many diseases including the current and any future pandemics. Although such predictions and the positive effects of SARS-CoV-2 on environment was already forecasted after the first wave of COVID-19, the learnt lesson as spotlight was not considered as one of the measures for which 2nd wave has quickly hit the world.
Collapse
Grants
- ECR/2016/001984 Science and Engineering Research Board
- 1188/ST, Bhubaneswar, dated 01.03.17, ST- (Bio)-02/2017 Department of Biotechnology, DST, Govt. of Odisha, IN
- 36 Seed/2019/Philosophy-1, letter number 941/69/OSHEC/2019, dt 22.11.19 Department of Higher Education, Govt. of Odisha, IN
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Kabita Das
- Department of Philosophy, Utkal University, Bhubaneswar, India
| |
Collapse
|
5
|
Kolluru SSR, Nagendra SMS, Patra AK, Gautam S, Alshetty VD, Kumar P. Did unprecedented air pollution levels cause spike in Delhi's COVID cases during second wave? STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 37:795-810. [PMID: 36164666 PMCID: PMC9493175 DOI: 10.1007/s00477-022-02308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 05/05/2023]
Abstract
The onset of the second wave of COVID-19 devastated many countries worldwide. Compared with the first wave, the second wave was more aggressive regarding infections and deaths. Numerous studies were conducted on the association of air pollutants and meteorological parameters during the first wave of COVID-19. However, little is known about their associations during the severe second wave of COVID-19. The present study is based on the air quality in Delhi during the second wave. Pollutant concentrations decreased during the lockdown period compared to pre-lockdown period (PM2.5: 67 µg m-3 (lockdown) versus 81 µg m-3 (pre-lockdown); PM10: 171 µg m-3 versus 235 µg m-3; CO: 0.9 mg m-3 versus 1.1 mg m-3) except ozone which increased during the lockdown period (57 µg m-3 versus 39 µg m-3). The variation in pollutant concentrations revealed that PM2.5, PM10 and CO were higher during the pre-COVID-19 period, followed by the second wave lockdown and the lowest in the first wave lockdown. These variations are corroborated by the spatiotemporal variability of the pollutants mapped using ArcGIS. During the lockdown period, the pollutants and meteorological variables explained 85% and 52% variability in COVID-19 confirmed cases and deaths (determined by General Linear Model). The results suggests that air pollution combined with meteorology acted as a driving force for the phenomenal growth of COVID-19 during the second wave. In addition to developing new drugs and vaccines, governments should focus on prediction models to better understand the effect of air pollution levels on COVID-19 cases. Policy and decision-makers can use the results from this study to implement the necessary guidelines for reducing air pollution. Also, the information presented here can help the public make informed decisions to improve the environment and human health significantly.
Collapse
Affiliation(s)
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Aditya Kumar Patra
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India
| | - V. Dheeraj Alshetty
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH Surrey UK
- Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096 China
| |
Collapse
|
6
|
Aix ML, Petit P, Bicout DJ. Air pollution and health impacts during the COVID-19 lockdowns in Grenoble, France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119134. [PMID: 35283200 PMCID: PMC8908221 DOI: 10.1016/j.envpol.2022.119134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
It is undeniable that exposure to outdoor air pollution impacts the health of populations and therefore constitutes a public health problem. Any actions or events causing variations in air quality have repercussions on populations' health. Faced with the worldwide COVID-19 health crisis that began at the end of 2019, the governments of several countries were forced, in the beginning of 2020, to put in place very strict containment measures that could have led to changes in air quality. While many works in the literature have studied the issue of changes in the levels of air pollutants during the confinements in different countries, very few have focused on the impact of these changes on health risks. In this work, we compare the 2020 period, which includes two lockdowns (March 16 - May 10 and a partial shutdown Oct. 30 - Dec. 15) to a reference period 2015-2019 to determine how these government-mandated lockdowns affected concentrations of NO2, O3, PM2.5, and PM10, and how that affected human health factors, including low birth weight, lung cancer, mortality, asthma, non-accidental mortality, respiratory, and cardiovascular illnesses. To this end, we structured 2020 into four periods, alternating phases of freedom and lockdowns characterized by a stringency index. For each period, we calculated (1) the differences in pollutant levels between 2020 and a reference period (2015-2019) at both background and traffic stations; and (2) the resulting variations in the epidemiological based relative risks of health outcomes. As a result, we found that relative changes in pollutant levels during the 2020 restriction period were as follows: NO2 (-32%), PM2.5 (-22%), PM10 (-15%), and O3 (+10.6%). The pollutants associated with the highest health risk reductions in 2020 were PM2.5 and NO2, while PM10 and O3 changes had almost no effect on health outcomes. Reductions in short-term risks were related to reductions in PM2.5 (-3.2% in child emergency room visits for asthma during the second lockdown) and NO2 (-1.5% in hospitalizations for respiratory causes). Long-term risk reductions related to PM2.5 were low birth weight (-8%), mortality (-3.3%), and lung cancer (-2%), and to NO2 for mortality (-0.96%). Overall, our findings indicate that the confinement period in 2020 resulted in a substantial improvement in air quality in the Grenoble area.
Collapse
Affiliation(s)
- Marie-Laure Aix
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Pascal Petit
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Dominique J Bicout
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
| |
Collapse
|
7
|
Uday U, Bethineedi LD, Hasanain M, Ghazi BK, Nadeem A, Patel P, Khalid Z. Effect of COVID-19 on air pollution related illnesses in India. Ann Med Surg (Lond) 2022; 78:103871. [PMID: 35637884 PMCID: PMC9134794 DOI: 10.1016/j.amsu.2022.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Ambient air pollution level not only causes respiratory diseases but also cardiovascular diseases, besides, increased visits to the emergency department for asthma, chronic obstructive pulmonary disease (COPD), bronchitis, allergic rhinitis, attention deficit hyperactivity disorder (ADHD) in children and premature deaths in infants. The occurrence of Coronavirus-19 (COVID-19) pandemic is both, a boon and bane. Despite the deplorable situation aroused by the pandemic, strict lockdown measures implemented to curb the drastic spread of the disease, also culminated into astonishing outcomes that were not prioritized. This article illustrates the effects of the ongoing pandemic on air pollution and provides recommendations aimed at limiting it.
Collapse
Key Words
- ADHD, attention deficit hyperactivity disorder
- AQI, air quality index
- Air pollution
- Air quality index (AQI)
- CO2, carbon dioxide
- COPD, chronic obstructive pulmonary disease
- COVID-19, coronavirus-19
- Cardiovascular diseases
- N95, non-oil 95
- NCAP, national clean air programme
- NH3, ammonia
- NO2, nitrogen dioxide
- O3, ozone
- Occupational diseases,particulate matter (PM)
- PM, particulate matter
- PPE, personal protective equipment
- Respiratory diseases
- SLDBI, state level disease burden initiative
- UNEP, united nations environment programme
- USD, United States dollar
- WHO, world health organization
- μg/m³, micrograms per cubic metre
Collapse
Affiliation(s)
- Utkarsha Uday
- West Bengal University of Health Sciences, Kolkata, India
| | | | | | | | | | - Prashastee Patel
- Parul Institute of Medical Sciences and Research, Vadodara, India
| | - Zaira Khalid
- Karachi Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
8
|
Silva ACT, Branco PTBS, Sousa SIV. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1950. [PMID: 35206139 PMCID: PMC8871899 DOI: 10.3390/ijerph19041950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
With the emergence of the COVID-19 pandemic, several governments imposed severe restrictions on socio-economic activities, putting most of the world population into a general lockdown in March 2020. Although scattered, studies on this topic worldwide have rapidly emerged in the literature. Hence, this systematic review aimed to identify and discuss the scientifically validated literature that evaluated the impact of the COVID-19 pandemic and associated restrictions on air quality. Thus, a total of 114 studies that quantified the impact of the COVID-19 pandemic on air quality through monitoring were selected from three databases. The most evaluated countries were India and China; all the studies intended to evaluate the impact of the pandemic on air quality, mainly concerning PM10, PM2.5, NO2, O3, CO, and SO2. Most of them focused on the 1st lockdown, comparing with the pre- and post-lockdown periods and usually in urban areas. Many studies conducted a descriptive analysis, while others complemented it with more advanced statistical analysis. Although using different methodologies, some studies reported a temporary air quality improvement during the lockdown. More studies are still needed, comparing different lockdown and lifting periods and, in other areas, for a definition of better-targeted policies to reduce air pollution.
Collapse
Affiliation(s)
- Ana Catarina T. Silva
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro T. B. S. Branco
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia I. V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.C.T.S.); (P.T.B.S.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Vega E, Namdeo A, Bramwell L, Miquelajauregui Y, Resendiz-Martinez CG, Jaimes-Palomera M, Luna-Falfan F, Terrazas-Ahumada A, Maji KJ, Entwistle J, Enríquez JCN, Mejia JM, Portas A, Hayes L, McNally R. Changes in air quality in Mexico City, London and Delhi in response to various stages and levels of lockdowns and easing of restrictions during COVID-19 pandemic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117664. [PMID: 34380230 PMCID: PMC8802357 DOI: 10.1016/j.envpol.2021.117664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 05/21/2023]
Abstract
The impacts of COVID-19 lockdown restrictions have provided a valuable global experiment into the extent of improvements in air quality possible with reductions in vehicle movements. Mexico City, London and Delhi all share the problem of air quality failing WHO guideline limits, each with unique situations and influencing factors. We determine, discuss and compare the air quality changes across these cities during the COVID-19, to understand how the findings may support future improvements in their air quality and associated health of citizens. We analysed ground-level PM10, PM2.5, NO2, O3 and CO changes in each city for the period 1st January to August 31, 2020 under different phases of lockdown, with respect to daily average concentrations over the same period for 2017 to 2019. We found major reductions in PM10, PM2.5, NO2 and CO across the three cities for the lockdown phases and increases in O3 in London and Mexico City but not Delhi. The differences were due to the O3 production criteria across the cities, for Delhi production depends on the VOC-limited photochemical regime. Levels of reductions were commensurate with the degree of lockdown. In Mexico City, the greatest reduction in measured concentration was in CO in the initial lockdown phase (40%), in London the greatest decrease was for NO2 in the later part of the lockdown (49%), and in Delhi the greatest decrease was in PM10, and PM2.5 in the initial lockdown phase (61% and 50%, respectively). Reduction in pollutant concentrations agreed with reductions in vehicle movements. In the initial lockdown phase vehicle movements reduced by up to 59% in Mexico City and 63% in London. The cities demonstrated a range of air quality changes in their differing geographical areas and land use types. Local meteorology and pollution events, such as forest fires, also impacted the results.
Collapse
Affiliation(s)
- E Vega
- Centro de Ciencias de la Atmósfera, National Autonomous University of Mexico (UNAM), Mexico.
| | - A Namdeo
- Geography and Environmental Sciences Department, Northumbria University, UK
| | - L Bramwell
- Geography and Environmental Sciences Department, Northumbria University, UK
| | - Y Miquelajauregui
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, UNAM, Mexico
| | - C G Resendiz-Martinez
- Secretaría de Medio Ambiente, Dirección de Monitoreo de Calidad del Aire, Subdirección de Análisis y Modelación, Mexico
| | - M Jaimes-Palomera
- Secretaría de Medio Ambiente, Dirección de Monitoreo de Calidad del Aire, Subdirección de Análisis y Modelación, Mexico
| | - F Luna-Falfan
- Secretaría de Medio Ambiente, Dirección de Monitoreo de Calidad del Aire, Subdirección de Análisis y Modelación, Mexico
| | - A Terrazas-Ahumada
- Secretaría de Medio Ambiente, Dirección de Monitoreo de Calidad del Aire, Subdirección de Análisis y Modelación, Mexico
| | - K J Maji
- Geography and Environmental Sciences Department, Northumbria University, UK
| | - J Entwistle
- Geography and Environmental Sciences Department, Northumbria University, UK
| | | | - J M Mejia
- Instituto Mexicano del Seguro Social (IMSS), Mexico
| | - A Portas
- Mathematics, Physics and Electrical Engineering, Northumbria University, UK
| | - L Hayes
- Population Health Sciences Institute, Newcastle University, UK
| | - R McNally
- Population Health Sciences Institute, Newcastle University, UK
| |
Collapse
|