1
|
Asogan M, Kim HY, Kidd S, Alastruey-Izquierdo A, Govender NP, Dao A, Shin JH, Heim J, Ford NP, Gigante V, Sati H, Morrissey CO, Alffenaar JW, Beardsley J. Candida parapsilosis: A systematic review to inform the World Health Organization fungal priority pathogens list. Med Mycol 2024; 62:myad131. [PMID: 38935912 PMCID: PMC11210616 DOI: 10.1093/mmy/myad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 06/29/2024] Open
Abstract
Candida parapsilosis is globally distributed and recognised for causing an increasing proportion of invasive Candida infections. It is associated with high crude mortality in all age groups. It has been particularly associated with nosocomial outbreaks, particularly in association with the use of invasive medical devices such as central venous catheters. Candida parapsilosis is one of the pathogens considered in the WHO priority pathogens list, and this review was conducted to inform the ranking of the pathogen in the list. In this systematic review, we searched PubMed and Web of Science to find studies between 2011 and 2021 reporting on the following criteria for C. parapsilosis infections: mortality, morbidity (hospitalisation and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. We identified 336 potentially relevant papers, of which 51 were included in the analyses. The included studies confirmed high mortality rates, ranging from 17.5% to 46.8%. Data on disability and sequelae were sparse. Many reports highlighted concerns with azole resistance, with resistance rates of >10% described in some regions. Annual incidence rates were relatively poorly described, although there was clear evidence that the proportion of candidaemia cases caused by C. parapsilosis increased over time. While this review summarises current data on C.parapsilosis, there remains an urgent need for ongoing research and surveillance to fully understand and manage this increasingly important pathogen.
Collapse
Affiliation(s)
- Mrudhula Asogan
- Prince of Wales Hospital, South-Eastern Sydney LHD, Sydney, Australia
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Yejin Kim
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Nelesh P Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aiken Dao
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research and Children’s Hospital at Westmead, Western Sydney LHD, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Jutta Heim
- Helmholtz Association, Helmholtz Centre for Infection Research, Germany
| | - Nathan Paul Ford
- Department of HIV, Viral Hepatitis and STIs, World Health Organization, Geneva, Switzerland
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Justin Beardsley
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| |
Collapse
|
2
|
Boutin CA, Luong ML. Update on therapeutic approaches for invasive fungal infections in adults. Ther Adv Infect Dis 2024; 11:20499361231224980. [PMID: 38249542 PMCID: PMC10799587 DOI: 10.1177/20499361231224980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Invasive fungal infections are increasingly encountered with the expansion of iatrogenic immunosuppression, including not only solid organ and hematopoietic stem cell transplant recipients but also patients with malignancies or autoimmune diseases receiving immunomodulatory therapies, such as Bruton Tyrosine Kinase (BTK) inhibitor. Their attributable mortality remains elevated, part of which is a contribution from globally emerging resistance in both molds and yeasts. Because antifungal susceptibility test results are often unavailable or delayed, empiric and tailored antifungal approaches including choice of agent(s) and use of combination therapy are heterogeneous and often based on clinician experience with knowledge of host's net state of immunosuppression, prior antifungal exposure, antifungal side effects and interaction profile, clinical severity of disease including site(s) of infection and local resistance data. In this review, we aim to summarize previous recommendations and most recent literature on treatment of invasive mold and yeast infections in adults to guide optimal evidence-based therapeutic approaches. We review the recent data that support use of available antifungal agents, including the different triazoles that have now been studied in comparison to previously preferred agents. We discuss management of complex infections with specific emerging fungi such as Scedosporium spp., Fusarium spp., Trichosporon asahii, and Candida auris. We briefly explore newer antifungal agents or formulations that are now being investigated to overcome therapeutic pitfalls, including but not limited to olorofim, rezafungin, fosmanogepix, and encochleated Amphotericin B. We discuss the role of surgical resection or debridement, duration of treatment, follow-up modalities, and need for secondary prophylaxis, all of which remain challenging, especially in patients chronically immunocompromised or awaiting more immunosuppressive therapies.
Collapse
Affiliation(s)
- Catherine-Audrey Boutin
- Division of Infectious Diseases, Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, Canada
| | - Me-Linh Luong
- Department of Medicine, Division of Infectious Diseases, Université de Montréal, Centre Hospitalier de l’Université de Montréal (CHUM), F Building, 6th Floor, Room F06.1102F, 1051 Sanguinet, Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
3
|
Peixoto PH, Silva ML, Portela FV, da Silva B, Milanez E, de Oliveira D, Ribeiro A, de Almeida H, Lima-Neto R, Guedes GM, Castelo-Branco D, Cordeiro R. Clinical, Epidemiological and Laboratory Features of Invasive Candida parapsilosis Complex Infections in a Brazilian Pediatric Reference Hospital during the COVID-19 Pandemic. J Fungi (Basel) 2023; 9:844. [PMID: 37623615 PMCID: PMC10456047 DOI: 10.3390/jof9080844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The present study aimed to describe the clinical, epidemiological and laboratory characteristics of invasive candidiasis by C. parapsilosis complex (CPC) in a Brazilian tertiary pediatric hospital during the COVID-19 pandemic. Clinical samples were processed in the BACT/ALERT® 3D system or on agar plates. Definitive identification was achieved by MALDI-TOF MS. Antifungal susceptibility was initially analyzed by the VITEK 2 system (AST-YS08 card) and confirmed by the CLSI protocol. Patient data were collected from the medical records using a structured questionnaire. CPC was recovered from 124 patients over an 18-month period, as follows: C. parapsilosis (83.87%), C. orthopsilosis (13.71%) and C. metapsilosis (2.42%). Antifungal resistance was not detected. The age of the patients with invasive CPC infections ranged from <1 to 18 years, and most of them came from oncology-related sectors, as these patients were more affected by C. parapsilosis. C. orthopsilosis infections were significantly more prevalent in patients from critical care units. Invasive infections caused by different pathogens occurred in 75 patients up to 30 days after the recovery of CPC isolates. Overall, 23 (18.55%) patients died within 30 days of CPC diagnosis. Catheter removal and antifungal therapy were important measures to prevent mortality. COVID-19 coinfection was only detected in one patient.
Collapse
Affiliation(s)
- Paulo Henrique Peixoto
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Maria Laína Silva
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Fernando Victor Portela
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Bruno da Silva
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Edlâny Milanez
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Denis de Oliveira
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Aldaíza Ribeiro
- Albert Sabin Children Hospital, Fortaleza 60410-794, Brazil;
| | - Henrique de Almeida
- Department of Tropical Medicine, Federal University of Pernambuco, Recife 50670-901, Brazil; (H.d.A.); (R.L.-N.)
| | - Reginaldo Lima-Neto
- Department of Tropical Medicine, Federal University of Pernambuco, Recife 50670-901, Brazil; (H.d.A.); (R.L.-N.)
| | - Glaucia Morgana Guedes
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Débora Castelo-Branco
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| | - Rossana Cordeiro
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza 60430-160, Brazil; (P.H.P.); (M.L.S.); (F.V.P.); (B.d.S.); (E.M.); (D.d.O.); (G.M.G.); (D.C.-B.)
| |
Collapse
|
4
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
5
|
Jafarian H, Hardani AK, Asnafi AA, Zarei Mahmoudabadi A. Enzymatic and antifungal susceptibility profiles of Candida glabrata isolates from pediatric patients and their genetic diversity based on microsatellite length polymorphism. Lett Appl Microbiol 2022; 75:1569-1578. [PMID: 36087054 DOI: 10.1111/lam.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to detect different genotypes of Candida glabrata isolates in pediatric patients with and without neutropenia utilizing microsatellite length polymorphism (MLP) and its correlation with drug resistance and enzymatic activity were assessed. Samples from neutropenic and non-neutropenic patients were collected from November 2020 to November 2021. Thirty-six C. glabrata strains were isolated and identified using classical and molecular methods. Then, C. glabrata isolates were genotyped by the MLP technique, and their antifungal susceptibility was performed based on the CLSI M27 guideline. Eighteen different multi-loci genotypes (G1 - G18) were detected based on MLP analysis. Analysis of molecular variance revealed high genetic variation within populations (94%) and low genetic differentiation among populations (6%). Also, 40% (n=4) of isolates from neutropenic patients were non-wild-type for posaconazole, and 30% (n=3) were resistant to caspofungin. Very strong hemolytic and proteinase activity were seen in 97.2 and 86.1% of isolates. Candida glabrata strains from neutropenic patients were genetically divergent from other populations. The minimum spanning tree shows that observed genotypes were mainly related to previously reported genotypes from Iran, Spain, and China.
Collapse
Affiliation(s)
- Hadis Jafarian
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Kamal Hardani
- Department of Pediatrics, School of Medicine, Abuzar Children Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Zarei Mahmoudabadi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
7
|
Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. J Fungi (Basel) 2021; 8:jof8010014. [PMID: 35049954 PMCID: PMC8781625 DOI: 10.3390/jof8010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
In different regions worldwide, there exists an intra-and inter-regional variability in the rates of resistance to antifungal agents in Candida glabrata, highlighting the importance of understanding the epidemiology and antifungal susceptibility profiles of C. glabrata in each region. However, in some regions, such as Ibero-America, limited data are available in this context. Therefore, in the present study, a systematic review was conducted to determine the antifungal resistance in C. glabrata in Ibero-America over the last five years. A literature search for articles published between January 2015 and December 2020 was conducted without language restrictions, using the PubMed, Embase, Cochrane Library, and LILACS databases. The search terms that were used were "Candida glabrata" AND "antifungal resistance" AND "Country", and 22 publications were retrieved from different countries. The use of azoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, and miconazole) varied between 4.0% and 100%, and that of echinocandins (micafungin, caspofungin, and anidulafungin) between 1.1% and 10.0%. The limited information on this subject in the region of Ibero-America emphasizes the need to identify the pathogens at the species level and perform antifungal susceptibility tests that may lead to the appropriate use of these drugs and the optimal doses in order to avoid the development of antifungal resistance or multi-resistance.
Collapse
|
8
|
Teh BW, Yeoh DK, Haeusler GM, Yannakou CK, Fleming S, Lindsay J, Slavin MA. Consensus guidelines for antifungal prophylaxis in haematological malignancy and haemopoietic stem cell transplantation, 2021. Intern Med J 2021; 51 Suppl 7:67-88. [PMID: 34937140 DOI: 10.1111/imj.15588] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antifungal prophylaxis can reduce morbidity and mortality from invasive fungal disease (IFD). However, its use needs to be optimised and appropriately targeted to patients at highest risk to derive the most benefit. In addition to established risks for IFD, considerable recent progress in the treatment of malignancies has resulted in the development of new 'at-risk' groups. The changing epidemiology of IFD and emergence of drug resistance continue to impact choice of prophylaxis, highlighting the importance of active surveillance and knowledge of local epidemiology. These guidelines aim to highlight emerging risk groups and review the evidence and limitations around new formulations of established agents and new antifungal drugs. It provides recommendations around use and choice of antifungal prophylaxis, discusses the potential impact of the changing epidemiology of IFD and emergence of drug resistance, and future directions for risk stratification to assist optimal management of highly vulnerable patients.
Collapse
Affiliation(s)
- Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel K Yeoh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Gabrielle M Haeusler
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Costas K Yannakou
- Department of Molecular Oncology and Cancer Immunology, Epworth Freemasons Hospital, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Shaun Fleming
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Health, Melbourne, Victoria, Australia
| | - Julian Lindsay
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Immunocompromised Host Infection Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
10
|
Ruiz-Azcona L, Santibañez M, Roig FJ, Vanaclocha H, Ventero MP, Boix V, Portilla-Sogorb J, Sánchez-Paya J, Merino E, Rodriguez JC. Isolation of Candida auris in large hospitals in the Autonomous Community of Valencia; population-based study (2013-2017). Rev Iberoam Micol 2021; 38:141-144. [PMID: 34266756 DOI: 10.1016/j.riam.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant and highly virulent yeast that spreads easily among patients. AIMS To describe the characteristics of candidemia caused by C. auris in the southeast of Spain (Autonomous Community of Valencia - ACV) through a 5-year population-based study. METHODS An analysis of all the episodes of candidemia diagnosed in the ACV, with approximately 4,500,000 inhabitants, during 2013-2017, was done. Data were obtained from the Epidemiological Surveillance Valencian Network, a network that collects all the microbiological data from the hospitals in the study region. RESULTS Based on the records, 1.9% of the isolates recovered from the positive blood cultures (corresponding to 1789 patients) were yeasts. This implies an annual rate of 7.09 cases/100,000 inhabitants. Of the 23 yeast species isolated, Candida albicans was the most frequent (37.3%), showing a higher frequency than Candida parapsilosis (28.4%) and Candida glabrata (15.6%) (p<0.0001). It is remarkable the emergence of C. auris during 2016 and 2017, as this species became the fourth more prevalent in 2016 (9.2%), and the third in 2017 (15.7%). Fungemia was more common in hospitals with >500 beds (63.3% versus 36.7% in small hospitals) (p<0.0001), and C. auris was mostly isolated in large hospitals (8.5% versus 0.3%); its incidence was higher in autumn and among the age group of 65-84 years. CONCLUSIONS The information about the local epidemiology of candidemia is essential in order to decide the best empirical treatment approach. This study reports the novel presence of C. auris in large hospitals. This pathogen has usually resistance to several antifungals and causes severe fungemia, so the results of this work reveal the need to monitor the presence of this species systematically.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, University of Cantabria-IDIVAL, Santander, Spain; Hospital Universitario Marqués de Valdecilla, Santander (Cantabria), Spain
| | - Miguel Santibañez
- Global Health Research Group, University of Cantabria-IDIVAL, Santander, Spain
| | - Francisco Javier Roig
- Dirección General de Salud Pública, Conselleria de Sanitat Universal y Salud Pública, Comunidad Valenciana, Valencia, Spain
| | - Hermelinda Vanaclocha
- Dirección General de Salud Pública, Conselleria de Sanitat Universal y Salud Pública, Comunidad Valenciana, Valencia, Spain
| | - Maria Paz Ventero
- Servicio de Microbiología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Vicente Boix
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Joaquín Portilla-Sogorb
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| | - José Sánchez-Paya
- Universidad Miguel Hernández, Elche, Alicante, Spain; Servicio Medicina Preventiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Esperanza Merino
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Juan Carlos Rodriguez
- Servicio de Microbiología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| |
Collapse
|
11
|
Direct Blood Culturing of Candida spp. on Solid Medium by a Rapid Enrichment Method with Magnetic Beads Coated with Recombinant Human Mannan-Binding Lectin. J Clin Microbiol 2020; 58:JCM.00057-20. [PMID: 32051260 PMCID: PMC7098737 DOI: 10.1128/jcm.00057-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate method to identify the species and antibiotic resistance of Candida spp. in blood is vital to increase the survival rates of patients with bloodstream infections. However, the extremely low levels of Candida spp. in blood make rapid diagnosis by standard blood culture difficult. In this study, we constructed a direct blood culturing method (i.e., the M1 method) by a rapid enrichment method with magnetic beads coated with a recombined human mannan-binding lectin (rhMBL; i. A rapid and accurate method to identify the species and antibiotic resistance of Candida spp. in blood is vital to increase the survival rates of patients with bloodstream infections. However, the extremely low levels of Candida spp. in blood make rapid diagnosis by standard blood culture difficult. In this study, we constructed a direct blood culturing method (i.e., the M1 method) by a rapid enrichment method with magnetic beads coated with a recombined human mannan-binding lectin (rhMBL; i.e., M1 protein), which demonstrated much higher Candida sp.-binding capacity than that of full-length MBL expressed in vitro (i.e., M2). With the M1 method, individual colonies were obtained before the standard blood culture method for each species of Candida spp. tested at <1 CFU/ml (an average of 29 h earlier). Additionally, the clinical sensitivity of the M1 method was 90.5% compared with that of the standard blood culture method when detecting frozen plasma from patients. More significantly, the turnaround time of the M1 method for blood culture could be reduced by approximately 37 to 43 h compared with that of the standard blood culture method in clinical sample identification.
Collapse
|