1
|
Maisano M, Cappello T, Oliva S, Natalotto A, Giannetto A, Parrino V, Battaglia P, Romeo T, Salvo A, Spanò N, Mauceri A. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2016; 121:40-48. [PMID: 27012897 DOI: 10.1016/j.marenvres.2016.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs) are known to act as "obesogens", being fat-soluble and affecting lipid metabolism. The Atlantic bluefin tuna, Thunnus thynnus, are top pelagic predators prone to bioaccumulate and biomagnify environmental contaminants. This study aimed at evaluating POPs-induced ectopic lipid accumulation in liver of adult tuna from the Mediterranean Sea. PCBs and organochlorine pesticides were measured in tuna liver, and marked morphological changes observed, namely poorly compacted tissues, intense vacuolization, erythrocyte infiltration and presence of melanomacrophages. The expression of perilipin, a lipid-droplet marker, positively correlated with the gene expression of PPARγ, a master regulator of adipogenesis, and its heterodimeric partner, RXRα. Changes in metabolites involved in fatty acid biosynthesis and ketogenesis were also observed. Although male bluefin tuna appeared to be more sensitive than females to the adverse effects of environmental obesogens, the alterations observed in tuna liver of both sexes suggest a potential onset of hepatic steatosis.
Collapse
Affiliation(s)
- Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonino Natalotto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Pietro Battaglia
- ISPRA, Institute for Environmental Protection and Research, Laboratory of Ichthyology and Marine Ecology, Via dei Mille 46, 98057 Milazzo, ME, Italy
| | - Teresa Romeo
- ISPRA, Institute for Environmental Protection and Research, Laboratory of Ichthyology and Marine Ecology, Via dei Mille 46, 98057 Milazzo, ME, Italy
| | - Andrea Salvo
- Department of Environmental Sciences, Security, Territory, Food and Health, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
D'Agata A, Fasulo S, Dallas LJ, Fisher AS, Maisano M, Readman JW, Jha AN. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 2013; 8:549-58. [PMID: 23697396 DOI: 10.3109/17435390.2013.807446] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed higher Ti accumulation (>10-fold) in the digestive gland compared to gills. Nano-sized TiO2 showed greater accumulation than bulk, irrespective of ageing, particularly in digestive gland (>sixfold higher). Despite this, transcriptional expression of metallothionein genes, histology and histochemical analysis suggested that the bulk material was more toxic. Haemocytes showed significantly enhanced DNA damage, determined by the modified comet assay, for all treatments compared to the control, but no significant differences between the treatments. Our integrated study suggests that for this ecologically relevant organism photocatalytic ageing of nTiO2 does not significantly alter toxicity, and that bulk TiO2 may be less ecotoxicologically inert than previously assumed.
Collapse
Affiliation(s)
- Alessia D'Agata
- Department of Biological and Environmental Sciences, University of Messina , Viale F. Stagno d'Alcontres 31, S. Agata - 98166, Messina , Italy
| | | | | | | | | | | | | |
Collapse
|