1
|
Liu D, Sun X, Qi X, Liang C. Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation. Arch Microbiol 2025; 207:38. [PMID: 39836288 DOI: 10.1007/s00203-024-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers. Therefore, it is important to study the bioactive ingredients of medicinal mushroom spores and molecular mechanisms of spore formation to develop healthcare products utilizing medicinal mushroom spores and breed sporeless/low- or high-spore-producing strains. This review summarizes the bioactive compounds of mushroom spores, the influence factors and molecular mechanisms of spore formation. Many bioactive compounds extracted from mushroom spores have a wide range of pharmacological activities. Several exogenous factors such as temperature, humidity, light, nutrients, and culture matrix, and endogenous factors such as metabolism-related enzymes activities and expression levels of genes related to sporulation individually or in combination affect the formation, size, and discharge of spores. The future research directions are also discussed for supplying references to analyze the bioactive compounds of spores and the molecular mechanisms of spore formation in mushrooms.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Zhang MZ, Xu JP, Callac P, Chen MY, Wu Q, Wach M, Mata G, Zhao RL. Insight into the evolutionary and domesticated history of the most widely cultivated mushroom Agaricus bisporus via mitogenome sequences of 361 global strains. BMC Genomics 2023; 24:182. [PMID: 37020265 PMCID: PMC10077685 DOI: 10.1186/s12864-023-09257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Agaricus bisporus is the most widely cultivated edible mushroom in the world with a only around three hundred years known history of cultivation. Therefore, it represents an ideal organism not only to investigate the natural evolutionary history but also the understanding on the evolution going back to the early era of domestication. In this study, we generated the mitochondrial genome sequences of 352 A. bisporus strains and 9 strains from 4 closely related species around the world. The population mitogenomic study revealed all A. bisporus strains can be divided into seven clades, and all domesticated cultivars present only in two of those clades. The molecular dating analysis showed this species origin in Europe on 4.6 Ma and we proposed the main dispersal routes. The detailed mitogenome structure studies showed that the insertion of the plasmid-derived dpo gene caused a long fragment (MIR) inversion, and the distributions of the fragments of dpo gene were strictly in correspondence with these seven clades. Our studies also showed A. bisporus population contains 30 intron distribution patterns (IDPs), while all cultivars contain only two IDPs, which clearly exhibit intron loss compared to the others. Either the loss occurred before or after domestication, that could suggest that the change facilitates their adaptation to the cultivated environment.
Collapse
Affiliation(s)
- Ming-Zhe Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No3 1St Beichen West Road, Beijing, 100101, Chaoyang District, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Mei-Yuan Chen
- Edible Fungi Institute of Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No3 1St Beichen West Road, Beijing, 100101, Chaoyang District, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Mark Wach
- Sylvan BioSciences, Kittanning, PA, 16201, USA
| | - Gerardo Mata
- Instituto de Ecología A.C. Carretera Antigua a Coatepec, 351, El Haya, 91073, Veracruz, CPXalapa, Mexico
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No3 1St Beichen West Road, Beijing, 100101, Chaoyang District, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China.
| |
Collapse
|
3
|
Jiang W, Wang J, Pan H, Yang R, Ma F, Luo J, Han C. Advances in Mechanism and Application of Molecular Breeding of Medicinal Mushrooms: A Review. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37831513 DOI: 10.1615/intjmedmushrooms.2023050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the development of molecular biology and genomics technology, mushroom breeding methods have changed from single traditional breeding to molecular breeding. Compared with traditional breeding methods, molecular breeding has the advantages of short time and high efficiency. It breaks through the restrictive factors of conventional breeding and improves the accuracy of breeding. Molecular breeding technology is gradually applied to mushroom breeding. This paper summarizes the concept of molecular breeding and the application progress of various molecular breeding technologies in mushroom breeding, in order to provide reference for future research on mushroom breeding.
Collapse
Affiliation(s)
- Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Hongyu Pan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, P.R. China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|