1
|
Wang P, Zhao B, Yin Z, Gao X, Liu M. Structure elucidation and anticancer activity of a heteropolysaccharide from white tea. Carbohydr Polym 2024; 333:121976. [PMID: 38494228 DOI: 10.1016/j.carbpol.2024.121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
White tea, one of the six traditional teas in China, is made only through natural withering and low-temperature drying processes. It demonstrates diverse pharmacological and health-promoting effects, including antioxidant, antiviral, anticancer, and hypolipidemic activities. Despite the significance of polysaccharides in white tea leaves, their fine structure and physiological functions remain unexplored. In this study, the polysaccharide fragment WTP-80a with anticancer activity was isolated and purified from white tea through water extraction, alcohol precipitation, DEAE-52 ion exchange column chromatography, and sephacryl S-200 dextran gel column chromatography. WTP-80a exhibited a molecular weight of 1.14 × 105 Da and consisted of galactose (Gal), arabinose (Ara), rhamnose (Rha), and glucuronic acid (Glc-UA). The main chain skeleton of WTP-80a contained 3,6)-β-Galp-(1→, 3)-α-Galp-(1→, 5)-α-Araf-(1 → and 3)-α-Glcp-UA-(1→. Branch chains included α-Araf-(1 → and β-Rhap-(1 → connected to the C3 and C6 positions of →3,6)-β-Galp-(1→, respectively. In vitro anticancer experiments revealed that WTP-80a effectively hindered the proliferation, colony formation, migration, and invasion of B16F10 cells. Additionally, it induced apoptosis in B16F10 cells by blocking the G2/M phase, increasing active oxygen content, and reducing mitochondrial membrane potential. These findings provide a solid theoretical foundation for the application of white tea polysaccharides as anticancer products.
Collapse
Affiliation(s)
- Pengyun Wang
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Baolong Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongtian Yin
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Xiao K, Shi Y, Liu S, Chen Y, Ni D, Yu Z. Compositions and Antioxidant Activity of Tea Polysaccharides Extracted from Different Tea ( Camellia sinensis L.) Varieties. Foods 2023; 12:3584. [PMID: 37835237 PMCID: PMC10572641 DOI: 10.3390/foods12193584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tea polysaccharide (TPS) is a bioactive compound extracted from tea. It has raised great interest among researchers due to its bioactivity. However, few studies focused on the diversity of TPS in its compositions and antioxidant activity. This study collected 140 different tea varieties from four tea germplasm gardens in China, and their TPSs in tea shoots were extracted. The extraction efficiency, composition contents, including neutral sugar, uronic acid, protein, and tea polyphenols, and the scavenging abilities of hydroxyl radical (·OH) and superoxide radical (O2-·) of 140 TPSs were determined and analyzed. The results showed significant differences in the compositions and antioxidant activities of TPS extracted from different tea varieties. By applying hierarchical clustering analysis (HCA), we selected nine tea varieties with high TPS extraction efficiency and 26 kinds of TPS with high antioxidant capacity.
Collapse
Affiliation(s)
- Kunyue Xiao
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (K.X.); (S.L.); (Y.C.); (D.N.)
| | - Yutao Shi
- College of Tea and Food Sciences, Wuyi University, Wuyishan 354300, China;
- Tea Engineering Research Center of Fujian Higher Education, Wuyishan 354300, China
| | - Sisi Liu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (K.X.); (S.L.); (Y.C.); (D.N.)
| | - Yuqiong Chen
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (K.X.); (S.L.); (Y.C.); (D.N.)
| | - Dejiang Ni
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (K.X.); (S.L.); (Y.C.); (D.N.)
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (K.X.); (S.L.); (Y.C.); (D.N.)
| |
Collapse
|
3
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
4
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Wu J, Wang C, Huang G, Zhao J, Wang X, Ji L, Zhang X. Biotransformation of vine tea ( Ampelopsis grossedentata) by solid-state fermentation using medicinal fungus Poria cocos. Journal of Food Science and Technology 2016; 53:3225-3232. [PMID: 27784917 DOI: 10.1007/s13197-016-2297-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Vine tea was bio-transformed using Poria cocos by solid-state fermentation in order to improve its taste and quality. Volatile components in vine tea were also identified by GC-MS. The changes of flavonoid, tea polyphenols and polysaccharides in fermented vine tea were evaluated. Flavonoid and polyphenols in vine tea were remained unchanged even after biotransformation, but content of polysaccharides increased to 3.9-fold than that of unfermented vine tea. Antioxidant activity such as DPPH free radical scavenging capacity (SR) was determined that there was a positive correlation between SR and content of polysaccharides in vine tea. Methyl 2-methylvalerate-a new volatile compound was identified and gave the vine tea rich delicate fragrance of fruits. The content of linolenic acid increased from 0.88 to 19.59 %. Biotransformation improved the taste and quality of vine tea.
Collapse
Affiliation(s)
- Jianguo Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Chenhuan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Gang Huang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jieyuan Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Lilian Ji
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
6
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|