1
|
Zhang SL, Wu Y, Zhang XH, Feng X, Wu HL, Zhou BJ, Zhang YQ, Cao M, Hou ZX. Characterization of the MIKC C-type MADS-box gene family in blueberry and its possible mechanism for regulating flowering in response to the chilling requirement. PLANTA 2024; 259:77. [PMID: 38421445 DOI: 10.1007/s00425-024-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Collapse
Affiliation(s)
- Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xiao-Han Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
| |
Collapse
|
2
|
Wang X, Wang B, Yuan F. Deciphering the roles of unknown/uncharacterized genes in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1276559. [PMID: 38078098 PMCID: PMC10701545 DOI: 10.3389/fpls.2023.1276559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
In recent years, numerous genes that encode proteins with specific domains that participate in different biological processes or have different molecular functions have been identified. A class of genes with typical domains whose function has rarely been identified and another type of genes with no typical domains have attracted increasing attentions. As many of these so-called as unknown/uncharacterized (U/U) genes are involved in important processes, such as plant growth and plant stress resistance, there is much interest in deciphering their molecular roles. Here, we summarize our current understanding of these genes, including their structures, classifications, and roles in plant growth and stress resistance, summarize progress in the methods used to decipher the roles of these genes, and provide new research perspectives. Unveiling the molecular functions of unknown/uncharacterized genes may suggest strategies to fine-tune important physiological processes in plants, which will enrich the functional network system of plants and provide more possibilities for adaptive improvement of plants.
Collapse
Affiliation(s)
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
3
|
Zhong J, Cui J, Miao M, Hu F, Dong J, Liu J, Zhong C, Cheng J, Hu K. A point mutation in MC06g1112 encoding FLOWERING LOCUS T decreases the first flower node in bitter gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1153208. [PMID: 37881613 PMCID: PMC10595031 DOI: 10.3389/fpls.2023.1153208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic trait which can impact the onset of maturity, the production of female flowers, and yield. However, the gene responsible for regulating FFN in bitter gourd is unknown. Here, we used a gynoecious line (S156G) with low FFN as the female parent and a monoecious line (K8-201) with high FFN as the male parent to obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was incompletely dominant over the high FFN trait. A major quantitative trait locus (QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and Mcffn1.4 were detected by whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn 2019. The Mcffn locus was further supported by molecular marker-based QTL mapping in three S156G×K8-201 F2 populations planted in autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn locus was fine-mapped into a 77.98-kb physical region on pseudochromosome MC06 using a large S156G×K8-201 F2 population (n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was considered as the most likely Mcffn candidate gene according to both expression and sequence variation analyses between parental lines. A point mutation (C277T) in MC06g1112, which results in a P93S amino acid mutation between parental lines, may be responsible for decreasing FFN in bitter gourd. Our findings provide a helpful resource for the molecular marker-assisted selective breeding of bitter gourd.
Collapse
Affiliation(s)
- Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Junjie Cui
- Department of Horticulture, Foshan University, Foshan, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Fang Hu
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, China
| | - Jichi Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chunfeng Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Turek S, Skarzyńska A, Pląder W, Pawełkowicz M. Understanding Transcription Factors and How They Affect Processes in Cucumber Sex Determination. Metabolites 2023; 13:740. [PMID: 37367898 DOI: 10.3390/metabo13060740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Plant reproduction is a fundamental process on Earth from the perspective of biodiversity, biomass gain, and crop productivity. It is therefore important to understand the sex determination process, and many researchers are investigating the molecular basis of this phenomenon. However, information on the influence of transcription factors (TFs), genes that encode DNA-binding proteins, on this process is limited, although cucumber is a model plant in this regard. In the present study, based on RNA-seq data for differentially expressed genes (DEGs), we aimed to investigate the regulatory TFs that may influence the metabolic processes in the shoot apex containing the forming flower buds. Therefore, the annotation of the genome of the B10 cucumber line was supplemented with the assigned families of transcription factors. By performing ontology analyses of the DEGs, the processes they participate in were identified, and TFs were located among the results. In addition, TFs that have significantly overrepresented targets among DEGs were detected, and sex-specific interactome network maps were generated, indicating the regulatory TFs based on their effects on DEGs and furthermore, on the processes leading to the formation of different-sex flowers. Among the most overrepresented TF families in the sex comparisons were the NAC, bHLH, MYB, and bZIP families. An interaction network analysis indicated the most abundant families among DEGs' regulatory TFs were MYB, AP2/ERF, NAC, and bZIP, and those with the most significant impact on developmental processes were identified, namely the AP/ERF family, followed by DOF, MYB, MADS, and others. Thus, the networks' central nodes and key regulators were identified with respect to male, female, and hermaphrodite forms. Here, we proposed the first model of the regulatory network of TFs that influences the metabolism of sex development in cucumber. These findings may help us to understand the molecular genetics and functional mechanisms underlying sex determination processes.
Collapse
Affiliation(s)
- Szymon Turek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
5
|
Integrative Analyses of Transcriptomes and Metabolomes Reveal Associated Genes and Metabolites with Flowering Regulation in Common Vetch ( Vicia sativa L.). Int J Mol Sci 2022; 23:ijms23126818. [PMID: 35743262 PMCID: PMC9224626 DOI: 10.3390/ijms23126818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
As an important source of protein for livestock and human consumption, Vicia sativa is cultivated worldwide, but its seed production is hampered at high altitudes because of the short frost-free period. Flowering represents the transition from a vegetative to a reproductive period, and early flowering benefits plant seed production at high altitudes. However, the molecular mechanisms of flowering regulation in V. sativa remain elusive. In the present study, two V. sativa accessions with different flowering characteristics were used: Lan3 (early-flowering) was cultivated by our laboratory, and 503 (late-flowering) was selected from 222 V. sativa accessions after three years of field experiments. The shoot samples (shoot tip length = 10 cm) of these two accessions were collected 63, 70, and 77 days after sowing, and the molecular regulatory mechanism of the flowering process was identified by integrative analyses of the transcriptomes and metabolomes. Kyoto Encyclopedia of Genes and Genomes enrichment showed that the synthesis and signal transduction of plant hormone pathways were the most enriched pathways in 4274 differentially expressed genes (DEGs) and in 259 differential metabolites between Lan3 and 503. Moreover, the contents of three metabolites related to salicylic acid biosynthesis and the transcription levels of two DEGs related to salicylic acid signal transduction in Lan3 were higher than those in 503. Further verification in various accessions indicated that salicylic acid metabolism may be involved in the flowering regulation process of V. sativa. These findings provide valuable information for understanding the flowering mechanism and for promoting breeding research in V. sativa.
Collapse
|
6
|
Liu Z, Zhang D, Zhang W, Xiong L, Liu Q, Liu F, Li H, An X, Cui L, Tian D. Molecular Cloning and Expression Profile of Class E Genes Related to Sepal Development in Nelumbo nucifera. PLANTS 2021; 10:plants10081629. [PMID: 34451674 PMCID: PMC8398900 DOI: 10.3390/plants10081629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
The lotus (Nelumbo Adans.) is an important aquatic plant with ornamental, medicinal and edible values and cultural connotations. It has single-, semi-double-, double- and thousand-petalled types of flower shape and is an ideal material for developmental research of flower doubling. The lotus is a basal eudicot species without a morphological difference between the sepals and petals and occupies a critical phylogenetic position in flowering plants. In order to investigate the genetic relationship between the sepals and petals in the lotus, the class E genes which affect sepal formation were focused on and analyzed. Here, SEPALLATA 1(NnSEP1) and its homologous genes AGAMOUS-LIKE MADS-BOXAGL9 (NnAGL9) and MADS-BOX TRANSCRIPTION FACTOR 6-like (NnMADS6-like) of the class E gene family were isolated from the flower buds of the Asian lotus (Nelumbo nucifera Gaertn.). The protein structure, subcellular localization and expression patterns of these three genes were investigated. All three genes were verified to locate in the nucleus and had typical MADS-box characteristics. NnSEP1 and NnMADS6-like were specifically expressed in the sepals, while NnAGL9 was highly expressed in the petals, suggesting that different developmental mechanisms exist in the formation of the sepals and petals in the lotus. The significant functional differences between NnSEP1, NnMADS6-like and NnAGL9 were also confirmed by a yeast two-hybrid assay. These results expand our knowledge on the class E gene family in sepal formation and will benefit fundamental research on the development of floral organs in Nelumbo.
Collapse
Affiliation(s)
- Zhuoxing Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Dasheng Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Weiwei Zhang
- Department of Plant Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China;
| | - Lei Xiong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Qingqing Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Fengluan Liu
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Hanchun Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Xiangjie An
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Lijie Cui
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
- Correspondence: (L.C.); (D.T.); Tel.: +86-21-37792288-932; Fax: +86-21-57762652
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Correspondence: (L.C.); (D.T.); Tel.: +86-21-37792288-932; Fax: +86-21-57762652
| |
Collapse
|
7
|
Cheng S, Chen P, Su Z, Ma L, Hao P, Zhang J, Ma Q, Liu G, Liu J, Wang H, Wei H, Yu S. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:153-166. [PMID: 32654381 PMCID: PMC7769237 DOI: 10.1111/pbi.13449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
The transition from vegetative to reproductive growth is very important for early maturity in cotton. However, the genetic control of this highly dynamic and complex developmental process remains unclear. A high-resolution tissue- and stage-specific transcriptome profile was generated from six developmental stages using 72 samples of two early-maturing and two late-maturing cotton varieties. The results of histological analysis of paraffin sections showed that flower bud differentiation occurred at the third true leaf stage (3TLS) in early-maturing varieties, but at the fifth true leaf stage (5TLS) in late-maturing varieties. Using pairwise comparison and weighted gene co-expression network analysis, 5312 differentially expressed genes were obtained, which were divided into 10 gene co-expression modules. In the MElightcyan module, 46 candidate genes regulating cotton flower bud differentiation were identified and expressed at the flower bud differentiation stage. A novel key regulatory gene related to flower bud differentiation, GhCAL, was identified in the MElightcyan module. Anti-GhCAL transgenic cotton plants exhibited late flower bud differentiation and flowering time. GhCAL formed heterodimers with GhAP1-A04/GhAGL6-D09 and regulated the expression of GhAP1-A04 and GhAGL6-D09. GhAP1-A04- and GhAGL6-D09-silenced plants also showed significant late flowering. Finally, we propose a new flowering regulatory pathway mediated by GhCAL. This study elucidated the molecular mechanism of cotton flowering regulation and provides good genetic resources for cotton early-maturing breeding.
Collapse
Affiliation(s)
- Shuaishuai Cheng
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengyun Chen
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Zhengzheng Su
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Liang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengbo Hao
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Jingjing Zhang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Qiang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Guoyuan Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hantao Wang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hengling Wei
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Shuxun Yu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| |
Collapse
|
8
|
Mo J, Zhang Z, Wang Z, Yu Z, Li S, Jiang S, Liu H, Ao J. Isolation and identification of a psychrotolerant dimethyl phthalate-degrading bacterium from selected frozen soil of high-latitude areas in China and optimization of its fermentation conditions using response surface methodology. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1696703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Jixian Mo
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - Zhihong Zhang
- Laboratory of Rice Processing, Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, PR China
| | - Zhigang Wang
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - Zhidan Yu
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - Shanshan Li
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - ShaSha Jiang
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - Hening Liu
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| | - Jia Ao
- Heilongjiang Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, PR China
| |
Collapse
|