1
|
An C, Ye K, Jiang R, Chen J, Yao Y, Lu L, Cheng Y, Liu R, Liu X, Zhao H, Qin Y, Zheng P. Cytological analysis of flower development, insights into suitable growth area and genomic background: implications for Glehnia littoralis conservation and sustainable utilization. BMC PLANT BIOLOGY 2024; 24:895. [PMID: 39343913 PMCID: PMC11441262 DOI: 10.1186/s12870-024-05585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Glehnia littoralis F. Schmidt ex Miq., an endangered plant species with significant medicinal, edible, and ecological value, is now a central concern for conservation and sustainable utilization. Investigating the physiological and ecological mechanisms leading to its endangerment and elucidating its genetic background constitutes the foundation for conducting in-depth research on G. littoralis. RESULTS Our observations have revealed a significant degree of floral sterility in wild populations of G. littoralis. The inflorescences of G. littoralis are classified into three types: completely fertile, completely sterile, and partially fertile compound umbels. Moreover, the flowers of G. littoralis can be categorized into fertile and sterile types. Sterile flowers exhibited abnormalities in the stigma, ovary, and ovules. This study is the first to discover that the presence or absence of a giant cell at the funiculus during the initiation of ovule primordium determines whether the flower can develop normally, providing cytological evidence for female sterility in G. littoralis. Conversely, both fertile and sterile flowers produced normally developed pollen. Field observations have suggested that robust plants bear more fertile umbels, while weaker ones have fewer or even no fertile umbels, indicating a close relationship between flower fertility and plant nutritional status. Our model correctly predicted that the eastern coastal regions of China, as well as prospective areas in Neimenggu and Sichuan, are suitable environments for its cultivation. Additionally, Using flow cytometry and genome survey, we estimated the genome size of G. littoralis to be 3.06 Gb and the heterozygosity to be 4.58%. CONCLUSION The observations and findings presented in this study were expected to provide valuable insights for further conserving its genetic resources and sustainable utilization of G. littoralis.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kangzhuo Ye
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Runfa Jiang
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Fuzhou, 350002, China
| | - Jiayi Chen
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lin Lu
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Cheng
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofen Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Heming Zhao
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ping Zheng
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Li W, Liu S, Wang S, Li Y, Kong D, Wang A. A single origin and high genetic diversity of cultivated medicinal herb Glehnia littoralis subsp. littoralis (Apiaceae) deciphered by SSR marker and phenotypic analysis. PLoS One 2024; 19:e0308369. [PMID: 39116119 PMCID: PMC11309482 DOI: 10.1371/journal.pone.0308369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ten SSR markers based on transcriptome sequencing were employed to genotype 231 samples of G. littoralis subsp. littoralis (Apiaceae) from nine cultivated populations and seven wild populations, aiming to assess the genetic diversity and genetic structure, and elucidate the origin of the cultivated populations. Cultivated populations exhibited relatively high genetic diversity (h = 0.441, I = 0.877), slightly lower than that of their wild counterparts (h = 0.491, I = 0.930), likely due to recent domestication and ongoing gene flow between wild and cultivated germplasm. The primary cultivated population in Shandong have the crucial genetic status. A single origin of domestication was inferred through multiple analysis, and wild populations from Liaoning and Shandong are inferred to be potentially the ancestor source for the present cultivated populations. Phenotypic analysis revealed a relatively high heritability of root length across three growth periods (0.683, 0.284, 0.402), with significant correlations observed between root length and petiole length (Pearson correlation coefficient = 0.30, P<0.05), as well as between root diameter and leaf area (Pearson correlation coefficient = 0.36, P<0.01). These parameters can serve as valuable indicators for monitoring the developmental progress of medicinal plants during field management. In summary, this study can shed light on the intricate genetic landscape of G. littoralis subsp. littoralis, providing foundational insights crucial for conservation strategies, targeted breeding initiatives, and sustainable management practices in both agricultural and natural habitats.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shuliang Liu
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shimeng Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Yihui Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Dongrui Kong
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| |
Collapse
|
3
|
Zhou C, An K, Zhang X, Tong B, Liu D, Kong D, Bian F. Sporogenesis, gametophyte development and embryogenesis in Glehnia littoralis. BMC PLANT BIOLOGY 2023; 23:114. [PMID: 36823547 PMCID: PMC9948529 DOI: 10.1186/s12870-023-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Glehnia littoralis is an economic herb with both medicinal and edible uses. It also has important ecological value and special phylogenetic status as it is a monotypic genus species distributing around beach. Little information on its reproductive biology has been reported so far, which has hindered conservation and application of this species. In this study, we observed morphological changes from buds emergence to seeds formation and internal changes during sporogenesis, gametophyte development and embryo and endosperm development of G. littoralis using paraffin-embedded-sectioning and stereo microscope. RESULTS The results showed that the stages of internal development events of G. littoralis corresponded to obvious external morphological changes, most of developmental features were consistent with other Apiaceae species. The development of male and female gametophytes was not synchronized in the same flower, however, exhibited temporal overlap. From mid-late April to mid-May, the anther primordial and ovule primordial developed into the trinucleate pollen grain and eight-nuclear embryo sac, respectively. From late-May to mid-July, the zygote developed into mature embryo. In addition, some defects in gynoecium or ovule development and abnormal embryo and endosperm development were found. We induced that the possible causes of abortion in G. littoralis were as follows: nutrient limitation, poor pollination and fertilization, and bad weather. CONCLUSIONS This study revealed the whole process and morphological characteristics of the development of reproductive organ in G. littoralis, which not only provided important data for the study of systematic and conservation biology, but also provided a theoretical basis for cross breeding.
Collapse
Affiliation(s)
- Chunxia Zhou
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Kang An
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Xin Zhang
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Boqiang Tong
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dan Liu
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dongrui Kong
- College of Life Science, Ludong University, Yantai, 264025, China.
| | - Fuhua Bian
- College of Life Science, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Maňourová A, Chinheya IP, Kalousová M, Ruiz-Chután JA, Okafor UC, Tchoundjeu Z, Tsobeng A, Van Damme P, Lojka B. Domestication Potential of Garcinia kola Heckel (Clusiaceae): Searching for Diversity in South Cameroon. PLANTS (BASEL, SWITZERLAND) 2023; 12:742. [PMID: 36840090 PMCID: PMC9966834 DOI: 10.3390/plants12040742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Seeds and bark of Garcinia kola Heckel (Clusiaceae) are popular products in West and Central Africa. Despite the tree's economic and cultural importance, little is known about its phenotypic and genotypic variation. This study characterised the morphological and genetic diversity of G. kola in South Cameroon, searching for traits and populations that might be used for domestication. Morphological assessment and amplified fragment length polymorphism (AFLP) markers were applied to characterise diversity among geographic populations from Central and South regions, and between managed and wild trees. AFLP-SURV and analysis of molecular variance results indicated that a major part of genetic diversity is harboured within populations rather than between them. Bayesian analysis, principal component analysis and t-SNE identified three clusters where Ebolowa emerged as the transition population, combining features from both regions. Trees from the south had a higher prevalence of morphological domestication-related characteristics. Trees from the central region, on the other hand, demonstrated greater genetic diversity. No significant differences in phenotype and genotype were revealed between wild and managed populations, suggesting G. kola is still in the early stages of its domestication process.
Collapse
Affiliation(s)
- Anna Maňourová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Irikidzai Prosper Chinheya
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marie Kalousová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - José Alejandro Ruiz-Chután
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Facultad de Agronomía, Universidad de San Carlos de Guatemala, Guatemala City 010012, Guatemala
| | - Uche Cyprian Okafor
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Zac Tchoundjeu
- Higher Institute of Environmental Sciences (HIES), Yaounde P.O. Box 16317, Cameroon
| | - Alain Tsobeng
- World Agroforestry Centre (CIFOR-ICRAF) Cameroon, Derrière Usine Bastos, Yaounde P.O. Box 16317, Cameroon
| | - Patrick Van Damme
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Department of Plant Production, Faculty of Bio-Science Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
5
|
Fu C, Ai Q, Cai L, Qiu F, Yao L, Wu H. Genetic Diversity and Population Dynamics of Leptobrachium leishanense (Anura: Megophryidae) as Determined by Tetranucleotide Microsatellite Markers Developed from Its Genome. Animals (Basel) 2021; 11:3560. [PMID: 34944336 PMCID: PMC8698065 DOI: 10.3390/ani11123560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Persisting declination of amphibians around the world has resulted in the public attaching importance to the conservation of their biodiversity. Genetic data can be greatly helpful in conservation planning and management, especially in species that are small in size and hard to observe. It is essential to perform genetic assessments for the conservation of Leptobrachium leishanense, an endangered toad and receiving secondary protection on the list of state-protected wildlife in China. However, current molecular markers with low reliability and efficiency hinder studies. Here, we sampled 120 adult toes from the population in the Leishan Mountain, 23 of which were used to develop tetranucleotide microsatellite markers based on one reference L. leishanense genome. After primer optimization, stability detection, and polymorphism detection, we obtained 12 satisfactory microsatellite loci. Then, we used these loci to evaluate the genetic diversity and population dynamics of the 120 individuals. Our results show that there is a low degree of inbreeding in the population, and it has a high genetic diversity. Recently, the population has not experienced population bottlenecks, and the estimated effective population size was 424.3. Accordingly, stabilizing genetic diversity will be key to population sustainability. Recovering its habitat and avoiding intentional human use will be useful for conservation of this species.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Wu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (C.F.); (Q.A.); (L.C.); (F.Q.); (L.Y.)
| |
Collapse
|
6
|
Sheeja TE, Kumar IPV, Giridhari A, Minoo D, Rajesh MK, Babu KN. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol Biol 2021; 2222:187-218. [PMID: 33301096 DOI: 10.1007/978-1-0716-0997-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.
Collapse
Affiliation(s)
- Thotten Elampilay Sheeja
- Indian Institute of Spices Research, Kozhikode, Kerala, India.
- Division of Crop Improvement and Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India.
| | | | | | | | | | | |
Collapse
|
7
|
Ma QG, Zhang JP, Pei D. Molecular genetic variability of Juglans regia L. and Juglans sigillata D. as revealed by fluorescent amplified-fragment length polymorphism. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Qing-guo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Jun-pei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| |
Collapse
|
8
|
Li W, Li B, Zhang P, Hu D, Wang A. Potential biological mechanisms underlying the endangered status of Glehnia littoralis revealed by nrDNA ITS and RAPD analyses. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1830713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Weiwei Li
- Laboratory of Plant Germplasm Resources and Utilization, School of Life and Sciences, Ludong University, Yantai, P.R. China
| | - Bin Li
- Laboratory of Plant Germplasm Resources and Utilization, School of Life and Sciences, Ludong University, Yantai, P.R. China
| | - Ping Zhang
- Laboratory of Plant Germplasm Resources and Utilization, School of Life and Sciences, Ludong University, Yantai, P.R. China
| | - Dechang Hu
- Laboratory of Plant Germplasm Resources and Utilization, School of Life and Sciences, Ludong University, Yantai, P.R. China
| | - Ailan Wang
- Laboratory of Plant Germplasm Resources and Utilization, School of Life and Sciences, Ludong University, Yantai, P.R. China
| |
Collapse
|