1
|
Aitchison EE, Dimesa AM, Shoari A. Matrix Metalloproteinases in Glioma: Drivers of Invasion and Therapeutic Targets. BIOTECH 2025; 14:28. [PMID: 40265458 PMCID: PMC12015896 DOI: 10.3390/biotech14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a complex interplay involving tumor proliferation, angiogenesis, and immune modulation, thereby influencing tumor progression and patient prognosis. This review provides a comprehensive analysis of the roles of various MMPs in different types of gliomas, from highly malignant gliomas to metastatic lesions. Emphasis is placed on how the dysregulation of MMPs impacts tumor behavior, the association between specific MMPs and the tumor grade, and their potential as biomarkers for diagnosis and prognosis. Additionally, the current therapeutic approaches targeting MMP activity are discussed, exploring both their challenges and future potential. By synthesizing recent findings, this paper aims to clarify the broad significance of MMPs in gliomas and propose avenues for translational research that could enhance treatment strategies and clinical outcomes.
Collapse
Affiliation(s)
- Ella E. Aitchison
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alexandra M. Dimesa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (E.E.A.); (A.M.D.)
| |
Collapse
|
2
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
3
|
Dlamini SN, Norris SA, Mendham AE, Mtintsilana A, Ward KA, Olsson T, Goedecke JH, Micklesfield LK. Targeted proteomics of appendicular skeletal muscle mass and handgrip strength in black South Africans: a cross-sectional study. Sci Rep 2022; 12:9512. [PMID: 35680977 PMCID: PMC9178538 DOI: 10.1038/s41598-022-13548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Although appendicular skeletal muscle mass (ASM) and handgrip strength (HGS) are key components of sarcopenia, their underlying biological mechanisms remain poorly understood. We aimed to investigate associations of circulating biomarkers with ASM and HGS in middle-aged black South Africans. This study consisted of 934 black South Africans (469 men and 465 women, aged 41-72 years) from the Middle-aged Soweto cohort. Linear regression models were used to examine relationships between 182 biomarkers (measured with proximity extension assay) and dual-energy X-ray absorptiometry-measured ASM and dynamometer-measured HGS. Age, height, sex, smoking, alcohol, food insecurity, physical activity, visceral adipose tissue, HIV and menopausal status were included as confounders. Regression models showing sex-interactions were stratified by sex. The Benjamini-Hochberg false discovery rate (FDR) was used to control for multiple testing, and FDR-adjusted P values were reported. In the total sample, 10 biomarkers were associated with higher ASM and 29 with lower ASM (P < 0.05). Out of these 39 biomarkers, 8 were also associated with lower HGS (P < 0.05). MMP-7 was associated with lower HGS only (P = 0.011) in the total sample. Sex-interactions (P < 0.05) were identified for 52 biomarkers for ASM, and 6 for HGS. For men, LEP, MEPE and SCF were associated with higher ASM (P < 0.001, = 0.004, = 0.006, respectively), and MEPE and SCF were also associated with higher HGS (P = 0.001, 0.012, respectively). Also in men, 37 biomarkers were associated with lower ASM (P < 0.05), with none of these being associated with lower HGS. Furthermore, DLK-1 and MYOGLOBIN were associated with higher HGS only (P = 0.004, 0.006, respectively), while GAL-9 was associated with lower HGS only (P = 0.005), among men. For women, LEP, CD163, IL6, TNF-R1 and TNF-R2 were associated with higher ASM (P < 0.001, = 0.014, = 0.027, = 0.014, = 0.048, respectively), while IGFBP-2, CTRC and RAGE were associated with lower ASM (P = 0.043, 0.001, 0.014, respectively). No biomarker was associated with HGS in women. In conclusion, most biomarkers were associated with ASM and not HGS, and the associations of biomarkers with ASM and HGS displayed sex-specificity in middle-aged black South Africans. Proteomic studies should examine ASM and HGS individually. Future research should also consider sexual dimorphism in the pathophysiology of sarcopenia for development of sex-specific treatment and diagnostic methods.
Collapse
Affiliation(s)
- Siphiwe N Dlamini
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shane A Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Global Health Research Institute, School of Health and Human Development, University of Southampton, Southampton, UK
| | - Amy E Mendham
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Health Through Physical Activity, Lifestyle and Sport Research Centre, FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asanda Mtintsilana
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kate A Ward
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Julia H Goedecke
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Lisa K Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Shrivastava R, Gandhi P, Gothalwal R. The road-map for establishment of a prognostic molecular marker panel in glioma using liquid biopsy: current status and future directions. Clin Transl Oncol 2022; 24:1702-1714. [PMID: 35653004 DOI: 10.1007/s12094-022-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are primary intracranial tumors with defined molecular markers available for precise diagnosis. The prognosis of glioma is bleak as there is an overlook of the dynamic crosstalk between tumor cells and components of the microenvironment. Herein, different phases of gliomagenesis are presented with reference to the role and involvement of secreted proteomic markers at various stages of tumor initiation and development. The secreted markers of inflammatory response, namely interleukin-6, tumor necrosis factor-α, interferon-ϒ, and kynurenine, proliferation markers human telomerase reverse transcriptase and microtubule-associated-protein-Tau, and stemness marker human-mobility-group-AThook-1 are involved in glial tumor initiation and growth. Further, hypoxia and angiogenic factors, heat-shock-protein-70, endothelial-growth-factor-receptor-1 and vascular endothelial growth factor play a major role in promoting vascularization and tumor volume expansion. Eventually, molecules such as matrix-metalloprotease-7 and intercellular adhesion molecule-1 contribute to the degradation and remodeling of the extracellular matrix, ultimately leading to glioma progression. Our study delineates the roadmap to develop and evaluate a non-invasive panel of secreted biomarkers using liquid biopsy for precisely evaluating disease progression, to accomplish a clinical translation.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India.
| | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P., 462026, India
| |
Collapse
|
5
|
Gasparri ML, Di Micco R, Siconolfi A, Farooqi AA, Di Bartolomeo G, Zuber V, Caserta D, Bellati F, Ruscito I, Papadia A, Gentilini OD. Brain metastases in breast cancer. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:63-85. [DOI: 10.1016/b978-0-12-821789-4.24001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Nichols P, Urriola J, Miller S, Bjorkman T, Mahady K, Vegh V, Nasrallah F, Winter C. Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 31:102741. [PMID: 34225019 PMCID: PMC8264212 DOI: 10.1016/j.nicl.2021.102741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinase (MMP) 7 is elevated in traumatic brain injury. Blood brain barrier dysfunction as measured by DCE MRI can be expressed as KTrans. MMP-7 shows a strong correlation with BBB dysfunction shown on MRI. MMP-7 shows potential to function as a serum biomarker.
Objectives To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction. Patients and Methods 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from KTrans. KTrans is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space. The serum samples were concurrently collected and later analysed for MMP-1, −2, −7, −9, and −10 levels using an ELISA assay. Statistical correlations between MMP levels and the KTrans value were calculated. Multiple testing was corrected using the Benjamin–Hochberg method to control the false‐discovery rate (FDR). Results Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/mL (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). Non-parametric Spearman correlation analysis on the data showed significant positive relationship between KTrans and MMP-7 (r = 0.55, p < 0.01). Correlations were also found between KTrans and MMP-1 (r = 0.74, p < 0.0002) and MMP-2 (r = 0.5, p < 0.025) but the actual MMP values were not above reference ranges, limiting the interpretation of results. Statistically significant correlations between KTrans and either MMP-9 or −10 were not found. Conclusion This is the first study to show a correlation between DCE measures and MMP values in patients with a TBI. Our results support the suggestion that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction in TBI patients.
Collapse
Affiliation(s)
- Paul Nichols
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia.
| | - Javier Urriola
- Queensland Brain Institute, The University of Queensland, Australia; Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Stephanie Miller
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Tracey Bjorkman
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Kate Mahady
- Department of Radiology, Royal Brisbane and Women's Hospital, Australia
| | - Viktor Vegh
- The Centre for Advanced Imaging, The University of Queensland, Australia; The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Australia
| | - Craig Winter
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia; Faculty of Medicine, The University of Queensland, Australia; School of Clinical Sciences, Queensland University of Technology, Australia
| |
Collapse
|
7
|
Zheng H, Momeni A, Cedoz PL, Vogel H, Gevaert O. Whole slide images reflect DNA methylation patterns of human tumors. NPJ Genom Med 2020; 5:11. [PMID: 32194984 PMCID: PMC7064513 DOI: 10.1038/s41525-020-0120-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism regulating gene expression and its role in carcinogenesis has been extensively studied. High-throughput DNA methylation assays have been used broadly in cancer research. Histopathology images are commonly obtained in cancer treatment, given that tissue sampling remains the clinical gold-standard for diagnosis. In this work, we investigate the interaction between cancer histopathology images and DNA methylation profiles to provide a better understanding of tumor pathobiology at the epigenetic level. We demonstrate that classical machine learning algorithms can associate the DNA methylation profiles of cancer samples with morphometric features extracted from whole slide images. Furthermore, grouping the genes into methylation clusters greatly improves the performance of the models. The well-predicted genes are enriched in key pathways in carcinogenesis including hypoxia in glioma and angiogenesis in renal cell carcinoma. Our results provide new insights into the link between histopathological and molecular data.
Collapse
Affiliation(s)
- Hong Zheng
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, USA
| | - Alexandre Momeni
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, USA
| | - Pierre-Louis Cedoz
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| |
Collapse
|
8
|
Metastases to the central nervous system: Molecular basis and clinical considerations. J Neurol Sci 2020; 412:116755. [PMID: 32120132 DOI: 10.1016/j.jns.2020.116755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastatic tumors are the most common malignancies of the central nervous system (CNS) in adults. CNS metastases are associated with unfavorable prognosis, high morbidity and mortality. Lung cancer is the most common source of brain metastases, followed by breast cancer and melanoma. Rising incidence is primarily due to improvements in systemic control of primary malignancies, prolonged survival and advances in cancer detection. PURPOSE To provide an overview of the metastatic cascade and the role of angiogenesis, neuroinflammation, metabolic adaptations, and clinical details about brain metastases from different primary tumors. METHODS A review of the literature on brain metastases was conducted, focusing on the pathophysiology and clinical aspects of the disease. PubMed was used to search for relevant articles published from January 1975 through December 2019 using the keywords brain metabolism, brain metastasis, metastatic cascade, molecular mechanisms, incidence, risk factors, and prognosis. 146 articles met the criteria and were included in this review. DISCUSSION Some primary tumors have a higher tendency to metastasize to the CNS. Establishing a suitable metastatic microenvironment is important in maintaining tumor cell growth and survival. Magnetic resonance imaging (MRI) is a widely used tool for diagnosis and treatment monitoring. Available treatments include surgery, radiotherapy, stereotactic radiosurgery, chemotherapy, immunotherapy, and systemic targeted therapies. CONCLUSIONS Prevention of metastases to the CNS remains a difficult challenge. Advances in screening of high-risk patients and future development of novel treatments may improve patient outcomes.
Collapse
|